

Relex Studio 用户培训手册

——Team, Corporate 及 Enterprise 版

中国可靠性网

http://www.kekaoxing.com

北京运通恒达科技有限公司

邮编: 100089 电话: 010-82561200/1/2/3 传真: 010-82561204 Email:support@ytforever.com

目 录

第	1章 7	可靠性预计与分配	. 1
	1.1. Relev	x Studio 可靠性预计与分配简介	1
	1.2. Relev	x 可靠性预计与分配应用实例 1	1
	1.2.1.	简介	2
	1.2.2.	Relex 应用过程	3
	1.3. 操作	练习	13
	1.3.1.	练习 1	13
	1.3.2.	练习 2	. 14

第1章 可靠性预计与分配

1.1. Relex Studio 可靠性预计与分配简介

可靠性预计是对产品或者系统的可靠性进行定量的估计,推测其可能达到的可靠性 水平,是其从定性考虑转入定量分析的关键之处,是实施可靠性工程的基础。

可靠性分配是把经过论证的可靠性目标值或可靠性预计值,从系统开始,自上而下 地分配给各个子系统、部件、元器件,其目的是满足系统的可靠性设计要求,同时为设 计提供依据。

Relex Studio 可靠性预计与分配软件包提供了强大的功能,不仅使用户能够预计设备 的可靠性,还能支持八种可靠性分配方法;不仅提供了传统可靠性预计的基本方法,还 集成了符合可靠性预计发展需要的最新的可靠性预计标准 PRISM、电子元器件数据库查 询与使用、NPRD/EPRD 数据库查询与使用、任务剖面可靠性预计以及非工作状态可靠性 预计等优秀功能,能够快速精确地计算系统失效率,MTBF(平均故障间隔时间),可靠 度和可用度。该软件包具有的特点有:CAD 导入向导,可扩展、并可智能化搜索的元件 库,科学图表生成,可视化报告设计等等。

Relex Studio 的可靠性预计分析步骤如下:

- a) 建立工程项目文件;
- b) 创建产品结构树;
- c) 输入系统环境参数及预计模型;
- d) 输入组件和元器件的预计信息;
- e) 查看元器件失效率(Pi因子);
- f) 系统可靠性预计计算;
- g) 敏感性图形分析;
- h) 输出报告;

注:在使用可靠性预计分析模块前,请首先确保您具有使用该模块的权限,且 Relex Studio 系统中有可用的授权供您使用。

1.2. Relex 可靠性预计与分配应用实例 1

- 分析对象: **某指挥车的车载无线通讯系统**
- 分析目的:
 - ▶ 掌握 Relex 可靠性预计应用过程
 - ▶ 掌握可靠性分配的应用过程
 - ▶ 掌握敏感性图形分析

1.2.1. 简介

■ 系统描述

我们要做的练习是虚拟某型导弹地面指挥系统的一个例子,分析的对象是指挥车的 车载无线通讯系统,如图 1-1 车载无线发射系统示意图所示。

图 1-1 车载无线发射系统示意图

■ 工作原理说明

操作手通过车载计算机发出控制指令,通过车载计算机上的网卡与发射设备通信, 发射设备接收到指令后以无线方式发射出去。

计算机上有两块网卡,分别通过网线连接到一个设备上。正常情况下,每个发射设备都发射同一条指令,只要有一个发射设备能够正确发射指令即表示任务成功。

■ 任务描述

计算机和发射设备安装在通讯指挥车上,车辆停稳后系统开始工作,环境温度范围 为-15~60℃,可靠性考核标准温度为 45℃。演习、训练状态下,系统为间歇工作方 式,工作时间占整个任务时间 60%。

■ 可靠性要求

可靠性定量要求:

- ▶ MTBF的规定值为 2000 小时
- ▶ 训练、演习状态基本可靠性考核:基本可靠度、任务可靠度均大于 0.99
- ▶ 战时状态任务可靠性考核:持续工作 1000 小时任务可靠度大于 0.80
- ▶ 可用度大于 0.90
- ▶ 平均故障维修时间小于 30min/0.5h

可靠性工作项目:

- ▶ 可靠性预计
- ▶ 工作状态可靠性建模及评估
- ▶ 故障模式影响及危害性分析
- ▶ 维修性分析

2

- ▶ 故障树分析
- ▶ 事件树分析
- ➢ Markov 分析
- ▶ 现场数据评估
- 1.2.2. Relex 应用过程
 - 新建一个项目,确保其中包括可靠性预计与分配模块,并为该项目文件起名为
 "*车载发射系统*"。可使用*模块选项*或者点击图标
 ◎激活*可靠性预计*;
 - 2. 创建产品系统树。案例中产品的系统结构如图 1-2所示。

图 1-2 系统树

<注意: 网卡和发射设备的数量都是2个,其它均为1个,所有的设备均可修。> 在 Relex Studio 中,建好的系统树如图 1-3所示。

永 筑树								
过滤 💾			=					
	名称	器件型号	系统树标识符	描述	参考标识	故障率,预计	MTBF,预计	计算模型
	🗆 🗾 车载发射系统	系统	系统1	系统级	SYS	481.276154	2077.809157	MIL-HDBK-217 FN2
	白口 计算机	计算机组件	System1	一级组件	COMP	337.276154	2964.929444	
	回💹 主板	主板组件	System2	二级组件	MAINB	59.891688	16696.807644	
	🛛 🔅 🖾 🖾	网卡组件	System3	二级组件	WCARD	277.384466	3605.104552	
	🖽 🚺 发射设备	发射设备组件	System4	一级组件	FASHE	144.000000	6944.444444	[]

图 1-3 车载发射系统结构

3. 构造元器件表。

按表 1-1 分别输入主板、网卡和发射设备所包含的元器件,要说明型号、描述、 数量、主分类和子分类。

组	主板	テクト	描述	元件	元器件	主米则	子米別	
件	数量	九日至ら	田心	数量	类别	工矢加	」矢加	
		PENTIUM PRO	CPU	1	Relex	集成电路	微处理器	
		MCM6709B	内存	1	Relex	集成电路	内存	
		XC4002	可编程逻 辑控制器	1	Relex	集成电路	可编程阵列逻辑电路,可编程逻 辑阵列电路	
主板	1	74LS00	2 输入端 与非门	2	Relex	集成电路	逻辑电路, CGA/ASIC	
100		RES	电阻	12	Relex	电阻	薄膜电阻 RL, RLR, RN, RNR, RM	
		CCAP	电容	20	Relex	电容	瓷介电容器 CK, CKR	
		RRELAY	继电器	1	Relex	继电器	普通用途	
		OTH	其他器件	1	用户自 定义			
IXX		HD74LS00 P	2 输入端 与非门	1	Relex	集成电路	逻辑电路, CGA/ASIC	
卡	2	ICSOCKET	接口板	2	Relex	连接器	印刷电路板边界	
		OTHE	其他器件	1	用户自 定义			
发射设备	2	COMDEV	发射单元	1	用户自 定义			

表 1-1 系统组成描述

4. 输入系统的环境参数。在参数Tab页进行设置。

根据系统描述,我们对系统进行设定,将温度定为 45 ℃,在 MIL-HDBK-217 FN2 模型中工作环境选择 *恶劣地面固定*,非工作环境为*地面*,在 GJB 299B 应力分析法模 型中 299B 环境选择 GF, GU - 恶劣地面固定,占空比设为 60%,如图 1-4所示。当 然您也可以对各个组件进行单独设定。

系统树 过滤 💾 📄 💭 名称 = 目■ 制造商 ■ ■ 器件型号 ■ ■ 系统树标识符 参考标识 ■■ 故障率,预计 MTBF, 预计 计算模型 a (A) ■ **车载发射系统** ■ **口** 计算机 ■ **口** 主板 ■ **口** 网卡 ■ **口** 发射设备 加近 系统级 一级组件 二级组件 二级组件 <u>系统</u> 计算机组件 系统1 AIL-HOBK-217 FN2 481.276154 337.276154 System1 COMF 2964.929444 主板组件 System2 网卡组件 System3 发射设备组件 System4 二级组件 MAINB 二级组件 WCARD 一级组件 FASHE 59.891688 277.384466 16696.807644 3605.104552 144.000000 6944.444444 🛚 🔰 系统树 🎯 配置表 A D H 计算数据 车载发射系统 MTTR 类型: 名称: 计算 ~ 计算模型 MIL-HDBK-217 FN 指定MTTR: ~ 方法: (无方法) 费用类型: 计算 * ~ 温度: 45.00 指定费用: 故障 案 类型: 计算 温度变化: ~ 环境、217 / Telcordia: 恶尖地而固定 指定故障率。 非工作状态环境: 地面 指定MTBF: 占夺比: 60.00 🛚 🔽 🤤 元器件表 🔝 通用数据 🔝 计算数据 ADH 系统树 过滤 💾 🔳 📕 ■ ■ 故障率, 预计 ■ 器件型号 ■■描述 制造商 = ■ ■ 参考标识 ■ ■ 系统树标识符 MTBF, 预计 计算模型 加还 <u>系统级</u> 一级组件 二级组件 二级组件 🛛 🔽 车载发射系统 <mark>系统</mark> 计算机组件 主板组件 网卡组件 系统1 2077.809157 2998 应力分析法 481.276154 □□ 计算机 □□ 主板 □□ 四卡 □□ 发射设备 System1 COMP MAINB 337.276154 2964.929444 16696.807644 3605.104552 System 59.891688 WCARD System3 277.384466 发射设备组件 System4 ─级组件 FASHE 144.000000 6944.444444 🛚 🔪 系统树 🏼 🖗 配置表 计算数据 么称 车载发射系统 MTTR 类型: 计算 ~ 计算模型 299B 应力分析法 指定MTTR: 温度: 45.00 费用类型: 计算 * 指定费用: 温度变化: 环境, 299: GF, GU - 恶劣地面固定 故障宰类型: 计算 ~ 非工作状态环境: 地面 指定故障率: ~ 指定MTBF: 60.00 占空比: 🛚 🔪 元器件表 🛛 😰 通用数据 🛛 🚇 计算数据 A D H

😿 Relex Studio 用户培训手册

图 1-4 环境和计算模型设置

5. 选择合适的预计模型。Relex 支持对系统、组件或器件级分别可以设置合适的预 计模型。在本例中,对于进口器件,我们用 MIL-HDBK-217 FN2 进行预计;对 于国产器件,我们用 GJB 299B 进行预计,器件来源描述见表 1-2。

表	1-2	元件来》	原
---	-----	------	---

组件	元件型号	描述	数量	来源
主板	PENTIUM PRO	CPU	1	进口
	MCM6709B	内存	1	进口

	XC4002	可编程逻辑控制器	1	进口
	74LS00	2 输入端与非门	2	进口
	RES	电阻	12	国产
	CCAP	电容	20	国产
	RRELAY	继电器	1	国产
	OTH	其他器件	1	进口
	HD74LS00P	2 输入端与非门	1	进口
网卡	ICSOCKET	接口板	2	进口
	OTHE	其他器件	1	进口
发射	COMDEV	发射单元	1	_
设备		及加十九	T	

根据上表所示,我们将系统的预计模型设为 *MIL-HDBK-217 FN2*,这表示 MIL-HDBK-217 FN2 为系统的默认模型,如果下属器件不选择预计模型,将采用 MIL-HDBK-217 FN2 模型进行可靠性预计。因此,我们仅将 RES、CCAP 和 RRELAY 的预计模型设定为 *GJB 299B 应力分析法*。

系统的可靠性预计模型的设定界面如图 1-4所示。

6. 输入组件的参数数据。

在系统执行任务过程中, 主板有 5℃的温升, 其平均维修时间(MTTR)为 10分钟; 网卡平均维修时间为 5分钟; 发射设备平均维修时间为 25分钟。(方法:选中相应的组件, 然后在*参数* tab 页中进行录入数据即可)

7. 输入元件的描述数据和预计数据。

该案例所有元件的描述数据及预计数据的具体设置如下表所示。

中国可靠性网 http://www.kekaoxing.com

表 1-3 元	. 件可靠性预计数据设置
---------	-------------------------

		PENTIUM PRO				
元四件刑 号。						
元器件型号:	Peley					
光如下天加。						
天观。	**************************************					
子关则; 关考标识;						
≫亏你\\; 注答搏刑,						
可关键 四位 刑 二、						
为官(V部)于至 5,	CPU					
油处; 费田 单元;	Y 1 000 00					
资用,率几; 制造商,	F 1,000.00					
		MCM6709B				
示器供刑号·	MCM6709B	Mr. Tra				
元器件型 9.	Reley V	尖型 技术类型	NMOS V	(DRAM不需要输入)		Pi 因子
光朝。 悉别。	集成由路	质量等级	商业 🖌	质量系数	#.##	缺省
子类别。	肉存 マ	位数	128	单位	MB 🗸	热阻
3 关办: 参考标识:		封装类型	DIP,玻璃封装	v		
· 计管理刑,		生产年限	1.0 🗸			
可基化型作用品。		初始得到	#.#			
时间1748年至53	由友	使用功率	1.400			
油松; 费用 单元.	PJ17	热阻	18.000	结·	Case	
页用,半儿; 曲述本:	± 150.00	温升	25.2			
		覆盖结温	#.#			
CAGE 代码:						
		XC4002				
		技术类型	MOS 🗸			
元器件型号:	XC4002	质量等级	商业 🗸	质量系数	#.##	Pi 因子
元器件奕别:	Relex V	门数量	8000			缺省
奕别: 二·*···		引脚	100			热阻
子奕别:	可编程阵列逻辑电路,可编程逻: 🗸	封装类型	密封扁平封装	*		
参考标识:	U3	生产年限	0.5 🗸			
计算模型:			##			
可智代辞件型号:	式住宅をため	使用功率	#.#			
·····································	□ 硼柱逻辑 全制器	热阻	12.000	结-	Case	
过用,甲兀: 如 进西.	± 120.00	温升	14.4			
	×					
CAGE (NH):		覆盖结温	#.#			
		74LS00				

7

🐱 Relex Studio 用户培训手册

😿 Relex Studio 用户培训手册

		OTH			
 元器件型号: 元器件类列: 类列: 类列: 子类列: 参考标识: 计算模型: 可替代器件型号: 描述: 费用,单元: 制造商: 	OTH 用户自定义	<mark>预计数据</mark> 故障方法 故障率	<u>失效率</u> ¥ 40.00000		
		HD74LS00P			
元器件型号: 元器件类别: 类别: 子类别: 参考标识: 计算模型: 可替代器件型号: 描述: 费用,单元: 制造商: CAGE 代码:	HD74L500P Relex ▼ 集成电路 ▼ 逻辑电路, CGA/ASIC ▼ WU1 M38510/75001 2输入端与非门 ¥ 2.00	技术类型 质量等级 门数量 引脚 封装类型 生产年限 初始温升 使用功率 热阻 温升 覆盖结温	LSTTL ♥ 商业 ♥ 质量系数 4 14 非密封: DIPs, PGA, SMT ♥ 1.0 ♥ #.# 0.200 28.000 5.6 #.#	#.## Case	PI 因子 缺省 热阻
 元器件型号: 元器件类别: 类别: 子类别: 参考标识: 计算模型: 可替代器件型号: 描述: 费用,单元: 制造商: CAGE 代码: 	ICSOCKET Relex	広島等級 匹配 麺抜次数 连接規格 安培/触点 温升 覆盖売温	商业 成对 >50 ▼ 28 ▼ 1.00 2.3 <i>#.#</i>		Pi因子 缺省
		OTHE			

😿 Relex Studio 用户培训手册

元器件型号:	OTHE							
元器件类别:	用户自定义 🗸 🗸 🗸							
类别:	*							
子类别:	*							
参考标识:	OTHE	预计数据						
计算模型:	~	故障方法 失效率 🗸						
可替代器件型号:		故障率 230.00000						
描述:	其他器件							
费用,单元:	¥ 35.00							
制造商:	*							
CAGE 代码:								
		COMDEV						
元器件型号:	COMDEV							
元器件型号: 元器件类别:	COMDEV 用户自定义							
元器件型号: 元器件类别: 类别:	COMDEV 用户自定义 V							
元器件型号: 元器件类别: 类别: 子类别:	COMDEV 用户自定义 V							
元器件型号: 元器件类别: 类别: 子类别: 参考标识:	COMDEV 用户自定义 V COM	预计数据						
元器件型号: 元器件类别: 类别: 子类别: 参考标识: 计算模型:	COMDEV 用户自定义 V COM	预计数据 故障方法						
元器件型号: 元器件类别: 类别: 子类别: 参考标识: 计算模型: 可替代器件型号:	COMDEV 用户自定义 V COM	预计数据 故障方法 失效率 故障率 120.00000						
 元器件型号: 元器件类别: 类别: 子类别: 参考标识: 计算模型: 可替代器件型号: 描述: 	COMDEV 用户自定义 ♥ COM COM 反射单元	预计数据 故障方法 女障率 120.00000						
 元器件型号: 元器件类别: 类别: 子类别: 参考标识: 计算模型: 可替代器件型号: 描述: 费用,单元: 	COMDEV 用户自定义	<u>预计数据</u> 故障方法 女障率 120.00000						
 元器件型号: 元器件类别: 类别: 子类别: 参考标识: 计算模型: 可替代器件型号: 描述: 费用,单元: 制造商: 	COMDEV 用户自定义 ♥ COM COM 反射单元 ¥ 1,100.00	<mark>预计数据</mark> 故障方法 女障率 120.00000						
 元器件型号: 元器件类别: 类别: 子类别: 参考标识: 计算模型: 可替代器件型号: 描述: 费用,单元: 制造商: CAGE 代码: 	COMDEV 用户自定义 ♥ COM COM 反射単元 ¥ 1,100.00	预计数据 故障方法 文 故障率 120.00000						

8. 可靠性预计计算。在*系统*菜单中选择*计算*或点击,在图 1-5中选择*可靠性预计*选项。

计算	
 □ 计算选项 □ 可靠性预计 □ 用户自定义 	 进择计算模块 ■ 法择计算模块 ■ 新露祖 ■ 新露祖 ■ 新露祖 ■ 新聞 ■ 新聞
	● 確定 ● 取消 ● 帮助

图 1-5 计算选项一选择可靠性预计

在计算属性框中*可靠性预计* Tab 页中,进行必要的计算选项的选择。在本例中, 所有选项都清空,如图 1-6所示,点击确定按钮,得到系统的计算结果框。查看完毕 后,关闭计算结果框,我们也可以从系统树中得到系统级、组件级和器件级的计算 结果,如图 1-7所示。

图 1-6 可靠性预计 Tab 页

系统树									
过滤 💾	= 0	= 8		=	=	=		=	
	名称	器件型号	系统树标识符	描述	参考标识	制造商	故障率,预计	MTBF, 预计	计算模型
(*) (*)	🗆 💹 车载发射系统	系统	系统1	系统级	SYS		481.276154	2077.809157	MIL-HDBK-217 FN2
	日💹 计算机	计算机组件	System1	一级组件	COMP		337.276154	2964.929444	
	白口 主板	主板组件	System2	二级组件	MAINB		59.891688	16696.807644	
	VI PENTIUM PRO	PENTIUM PRO	System13	CPU	U1		17.315184	57752.779192	
() ()	- MCM6709B	MCM6709B	System14	内存	U2		2.660883	375815.110575	
	- 🤤 XC4002	XC4002	System15	可编程逻	U3		3.017479	331402.490063	1
	- 🤤 74LS00	74LS00	System16	2输入端	U4,U5		0.170116	5.878336e+006	
	RES	RES	System17	电阻	R1~R12		1.358628	736036.894007	299B 应力分析法
(a)	CCAP	CCAP	System18	电容	C1~C20		1.245616	802815.688319	299B 应力分析法
	RRELAY	RRELAY	System19	继电器	D1		10.123783	98777.305184	299B 应力分析法
	🗢 🖓 ОТН	OTH	System20	其他器件	OTH		24.000000	41666.666667	
	白柳 网卡	网卡组件	System3	二级组件	WCARD		277.384466	3605.104552	
	VI HD74LS00P	HD74LS00P	System25	2输入端	WU1		0.129080	7.747117e+006	
	- ICSOCKET	ICSOCKET	System26	接口板	SP1,SP2		0.563153	1.775718e+006	
	C OTHE	OTHE	System27	其他器件	OTHE		138.000000	7246.376812	
	白脚 发射设备	发射设备组件	System4	一级组件	FASHE		144.000000	6944.444444	
12 12	COMDEV	COMDEV	System28	发射单元	COM		72.000000	13888.888889	

图 1-7 可靠性预计计算结果

9. 敏感性图形分析。

创建新的关于温度敏感性分析的*图形模板*,将*培训用例文件夹*中可靠性预计文件夹下的组件的温度敏感性分析.RGT 文件复制到项目中;使用菜单工具->图形进行 敏感性图形查看。

图 1-8 敏感性分析(针对组件)

10. 报告输出。

创建新的报告模板,将培训用例文件夹中可靠性预计文件夹下的可靠性预 计.RFR 文件复制到项目中;使用菜单文件->打印预览进行报告查看。

页码 1

Rel	ex [.]

单元可靠性预计报告								
系統名称 主: 系統編号 主: 描述 二:	版 版组件 级组件					计算模 环境 温度	型 I - 	MIL-HDBK-217 感劣地面固定 50.00
型号规格	编号	元器件类别	类别	预计模型	Pi因子	单元故障率	数量	累计故障率
74LS00	U4, U5	Relex	集成电路		C1: 0.002500, C2: 0.004841, Pi E: 2.000000, Pi L: 1.200000, Pi Q: 10.000000, Pi T: 0.613018, Model Failure Rate: 0.134586	.134586	2	.170116
CCAP	C1~C2	Relex	电容	299B 应力分析	Lambda B: 0.004460, Pi CV: 1.773849, Pi E: 4.100000, Pi Q: 3.000000, Model Failure Rate: 0.097314	.097314	20	1.245616
MCM6709B	U2	Relex	集成电路		C1: 0.062000, C2: 0.050322, Lambda Cyc: 0.00000, Pi E: 2.000000, Pi L: 1.500000, Pi Q: 10.000000, Pi T: 2.903884, Model Failure Rate: 4.210258	4.210258	1	2.660883
OTH	OTH	用户自定义			Model Failure Rate: 40.000000	40.000000	1	24.000000

图 1-9 预计输出报告

1.3. 操作练习

- 1.3.1. 练习1
 - 简介: 针对可靠性预计与分配应用实例1进行任务剖面可靠性计算
 - 目的: 练习基于任务剖面进行可靠性预计计算
 - 操作步骤:
 - ▶ 步骤一,在*项目导航条*中单击*支持文件->安装->任务剖面*,打开项目的任务 剖面文件,点击插入一个新的任务剖面;
 - ▶ 步骤二,在任务剖面文件中,直接输入总任务时间为6小时(注:该值的设置会影响可靠度的计算结果);
 - ▶ 步骤三,在任务剖面文件中,通过点击这里插入一个新的任务剖面,来添加 车载发射系统所有任务阶段记录,如下图所示;

%⊧	加固定义								
	任务剖面定义		显示预计	字段? '	任务时间	务时间 总百分比		备注	
1	系统剖面		☑ 6.00 100.		100.00				
*	< 点击这里插入-	一个新的任务	·剖面>						
任务部	到面阶段								
	任务阶段	阶段代码	百分比	温度	工作状态	3	非工	非工作状态环境	备注
1	系统整体自检	自检	10.0000	55.0	0 恶劣地面固;	定		地面	
2	工作阶段	固定通讯	90.0000	45.0	0 恶劣地面固;	定		地面	
*	< 点击这里插入一个新的任务阶段 >								

图 1-10 任务剖面文件

- ▶ 步骤四,关掉任务剖面页,系统自动对任务剖面文件进行保存。
- ▶ 步骤五,在*计算*属性框中*计算选项* Tab 页选择*可靠性预计*复选框,并且在*可靠性预计* Tab 页中选择*任务剖面计算*复选框,在*任务剖面*的下拉菜单里选择 刚刚设置的*系统剖面*,请参考图 1-6;
- ▶ 步骤六,进行计算,得到任务剖面可靠性预计的计算结果,如下图所示。

赶着计算结果		
λ 预计结果		\nearrow
值	结果	
故障率,预计		481.276154
MTBF,预计		2077.809157
可靠度,预计的		0.997117
可用度		0.999907
MTTR		0.193438
故障率,任务		482.004438
MTBF,任务		2074.669693
可靠度,任务		0.997112
可用度,任务		0.999907
💽 Excel 🔷 打印		
		关闭 帮助

图 1-11 任务剖面计算结果

1.3.2. 练习2

- 简介:针对可靠性预计与分配应用实例1进行可靠性分配计算
- 目的: 练习专家评分法的可靠性分配过程
- 操作步骤:
 - ▶ 步骤一,点击菜单视图->文件属性,在可靠性预计标题下的分配方法栏中选择专家评分法;
 - 步骤二,在系统*计算数据*的 Tab 页里选择*故障率类型*为分配,如下图所示。 假设对车载发射系统整体作为顶层分析对象,在弹出的分配 Tab 页中通过对 故障率λ设置目标值,进行总体可靠性指标控制,如下图所示;

名称:		车载发射系统	MTTR 类型:	计算 🖌 🖌
计算模型		MIL-HDBK-217 FN2	指定MTTR:	#.#
方法:		(无方法) 🔹 🔽	费用类型:	计算 🔽
温度:		45.00	指定费用:	¥ .00
温度变化:		#.#	故障率类型:	分配 🔽
环境, 217 / Telcordia:		恶劣地面固定 😽 😽	指定故障率:	#.#
非工作状态环境:		地面 😽	指定MTBF:	#.#
占空比:		60.00]	
	分配對 分配目 分配目 分配目 分配目 分配目 分配。 分配。 3 分配。3	^{藝型} : 目标类型: 目标, FR: 目标, <u>M</u> TBF: 环境: 复杂度: 运行时间:	指定目标 失效率 500.000000 10000.000000 1 1 1	
	分配。	技术状态:	1	

图 1-12 设置系统总体故障率目标值

▶ 步骤三,针对指标的分配对象设定其权值;本例中用专家评分法只对计算机 和发射设备进行指标分配,如表 1-4所示。

中国可靠性网 <u>http://www.kekaoxing.com</u>

系统树

表 1-4 计算机组件可靠性分配数据输入

计算机			发射设备				
分配类型:	进行分配	*	分配类型:	进行分配	~		
分配目标类型:	失效率	~	分配目标类型:	失效率	~		
分配目标, FR:	0.000000		分配目标, FR:	0.000000			
分配目标, <u>M</u> TBF:	0.000000		分 配 目标, <u>M</u> TBF:	0.000000			
分配,环境:	4		分配,环境:	6			
分配,复杂度:	9		分配,复杂度:	3			
分配,运行时间:	10		分配,运行时间:	6			
分配,技术状态:	6		分配,技术状态:	4			

- ▶ 步骤五,在*计算*属性框中*计算选项* Tab 页选择 可靠性预计复选框,并且在可 靠性预计 Tab 页中选择 分配 复选框,请参考图 1-6;
- ▶ 步骤六,进行计算,得到可靠性分配的计算结果,如图 1-13所示;

过滤 💾	=	=	=		=	=	=	= =
	名称	器件型号	系统树标识符	参考标识	描述	制造商	故障率,	MTBF,预计
	🗆 💹 车载发射系统	系统	系统1	SYS	系统级		500.000000	2000.000000
	⊕₩2 计算机	计算机组	System1	COMP	一级组件		357.142857	2800.000000
	田🥥 发射设备	发射设备	System4	FASHE	一级组件	2	142.857143	7000.000000

图 1-13 可靠性分配的计算结果