
Software debugging,
testing, and verification

by B. Hailpern
P. Santhanam

In commercial software development
organizations, increased complexity of products,
shortened development cycles, and higher
customer expectations of quality have placed a
major responsibility on the areas of software
debugging, testing, and verification. As this issue
of the IBM Systems Journal illustrates, there are
exciting improvements in the underlying
technology on all three fronts. However, we
observe that due to the informal nature of
software development as a whole, the prevalent
practices in the industry are still immature, even
in areas where improved technology exists. In
addition, tools that incorporate the more
advanced aspects of this technology are not
ready for large-scale commercial use. Hence
there is reason to hope for significant
improvements in this area over the next several
years.

A lthough the complexity and scope of software
has increased tremendously over the past dec-

ades, advances in software engineering techniques
for producing the software have been only moder-
ate, at best. Software development has remained pri-
marily a labor-intensive effort and thus subject to hu-
man limitations. As Frederick Brooks explained over
a quarter of a century ago,1 there is a big difference
between an isolated program created by a lone pro-
grammer and a programming systems product. A
programming systems product “can be run, tested,
repaired, and extended by anybody . . . in many op-
erating environments, for many sets of data” and
forms a part of “a collection of interacting programs,
coordinated in function and disciplined in format,
so that the assemblage constitutes an entire facility
for large tasks.” Brooks asserted a nine-fold increase

in cost to develop a programming system product
from an isolated program (see Figure 1).

With the advent of the Internet and the World Wide
Web, the problems that were recognized a quarter
century ago as having “no silver bullet” for the so-
lution1 have been magnified. The challenges of de-
signing and testing distributed computing systems,
with distributed data and Web services, with the need
for coexistence of heterogeneous platforms, unpre-
dictable run-time environments, and so on, make the
already difficult problem even harder.

A key ingredient that contributes to a reliable pro-
gramming systems product is the assurance that the
program will perform satisfactorily in terms of its
functional and nonfunctional specifications within
the expected deployment environments. In a typical
commercial development organization, the cost of
providing this assurance via appropriate debugging,
testing, and verification activities can easily range
from 50 to 75 percent of the total development cost.
Thus we should consider what is involved in these
activities that make them so challenging and so ex-
pensive.

Since one of the goals of this special issue of the IBM
Systems Journal is to be accessible to the students of
software engineering at large, we define relevant ter-
minology and its implications (we include formal no-

�Copyright 2002 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

HAILPERN AND SANTHANAM 0018-8670/02/$5.00 © 2002 IBM IBM SYSTEMS JOURNAL, VOL 41, NO 1, 20024

tation for this terminology, but it is not essential for
the basic understanding of problem definition). Note
that the terms “debugging,” “testing,” and “verifi-
cation” are not mutually exclusive activities, espe-
cially in everyday practice. The definitions draw dis-
tinctions, but the boundaries may actually be fuzzy.
We begin with a software program written in a pro-
gramming language (let P be the program written
in language L). The program is expected to satisfy
a set of specifications, where those specifications are
written in a specification language (call the set of
specifications � � {�1 , �2 , �3 , . . . , �n} and the
specification language �). In most real-world cases,
the specification language (�) is the natural language
of the development team (i.e., English, Spanish, etc.).

Debugging: The process of debugging involves an-
alyzing and possibly extending (with debugging state-
ments) the given program that does not meet the
specifications in order to find a new program that
is close to the original and does satisfy the specifi-
cations (given specifications � and a program P, not
satisfying some �k � �, find a program P� “close”
to P that does satisfy �k). Thus it is the process of
“diagnosing the precise nature of a known error and
then correcting it.”2

Verification: Given a program and a set of specifi-
cations, show that the program satisfies those spec-
ifications (given P and a set of specifications � �
{�1, �2, �3, . . . , �n}, show that P satisfies �). Thus,
verification is the process of proving or demonstrat-
ing that the program correctly satisfies the specifi-
cations.2 Notice that we use the term verification in
the sense of “functional correctness,” which is dif-
ferent from the typical discussion of verification ac-
tivities discussed in some software engineering lit-
erature,3,4 where it applies to ensuring that “each step
of the development process correctly echoes the in-
tentions of the immediately preceding step.”

Testing: Whereas verification proves conformance
with a specification, testing finds cases where a pro-
gram does not meet its specification (given specifi-
cations � and a program P, find as many of �1 , �2 ,
�3 , . . . , �p � � not satisfied by P). Based on this
definition, any activity that exposes the program be-
havior violating a specification can be called testing.
In this context, activities such as design reviews, code
inspections, and static analysis of source code can
all be called testing, even though code is not being
executed in the process of finding the error or un-
expected behavior. These activities are sometimes
referred to as “static testing.”5 Of course, execution

of code by invoking specific test cases targeting spe-
cific functionality (using, for example, regression test
suites) is a major part of testing.

Validation: Validation is the process of evaluating
software, at the end of the development process, to
ensure compliance with requirements. Note that the
verification community also uses the term validation
to differentiate formal functional verification from
extensive testing of a program against its specifica-
tions.

Defect: Each occurrence of the program design or
the program code that fails to meet a specification
is a defect (bug).6

Debugging, testing, and verification mapped
to the software life cycle

In a typical software development process, irrespec-
tive of the specific development model followed (i.e.,
waterfall, iterative, spiral, etc.5,7), certain basic ac-
tivities are required for a successful execution of a
project, as illustrated in Figure 2. In this context, it
is useful to know the specific roles played by debug-
ging, testing, and verification.

Debugging. The purpose of debugging is to locate
and fix the offending code responsible for a symp-
tom violating a known specification. Debugging typ-
ically happens during three activities in software de-
velopment, and the level of granularity of the analysis
required for locating the defect differs in these three.

IBM SYSTEMS JOURNAL, VOL 41, NO 1, 2002 HAILPERN AND SANTHANAM 5

The first is during the coding process, when the pro-
grammer translates the design into an executable
code. During this process the errors made by the pro-
grammer in writing the code can lead to defects that
need to be quickly detected and fixed before the code
goes to the next stages of development. Most often,
the developer also performs unit testing to expose
any defects at the module or component level. The
second place for debugging is during the later stages
of testing, involving multiple components or a com-
plete system, when unexpected behavior such as
wrong return codes or abnormal program termina-
tion (“abends”) may be found. A certain amount of
debugging of the test execution is necessary to con-
clude that the program under test is the cause of the
unexpected behavior and not the result of a bad test
case due to incorrect specification, inappropriate
data, or changes in functional specification between
different versions of the system. Once the defect is
confirmed, debugging of the program follows and the
misbehaving component and the required fix are de-
termined. The third place for debugging is in pro-
duction or deployment, when the software under test
faces real operational conditions. Some undesirable
aspects of software behavior, such as inadequate per-
formance under a severe workload or unsatisfactory

recovery from a failure, get exposed at this stage and
the offending code needs to be found and fixed be-
fore large-scale deployment. This process may also
be called “problem determination,” due to the en-
larged scope of the analysis required before the de-
fect can be localized.

Verification. In order to verify the functional cor-
rectness of a program, one needs to capture the
model of the behavior of the program in a formal
language or use the program itself. In most commer-
cial software development organizations, there is of-
ten no formal specification of the program under de-
velopment. Formal verification8 is used routinely by
only small pockets of the industrial software com-
munity, particularly in the areas of protocol verifi-
cation and embedded systems. Where verification is
practiced, the formal specifications of the system de-
sign (derived from the requirements) are compared
to the functions that the code actually computes. The
goal is to show that the code implements the spec-
ifications.

Testing. Testing is clearly a necessary area for soft-
ware validation. Typically, prior to coding the pro-
gram, design reviews and code inspections are done

Figure 2 The activities that involve debugging, testing, and verification in a typical software development process

DEBUGGING

VERIFICATION

HAILPERN AND SANTHANAM IBM SYSTEMS JOURNAL, VOL 41, NO 1, 20026

as part of the static testing effort.9 Once the code
is written, various other static analysis methods based
on source code can be applied.5 The various kinds
and stages of testing that target the different levels
of integration and the various modes of software fail-
ures are discussed in a wide body of literature.2,10,11

The testing done at later stages (e.g., external func-
tion tests, system tests, etc., as shown in Figure 3)
is “black box” testing, based on external specifica-
tions, and hence does not involve the understand-
ing of the detailed code implementations. Typically,
system testing targets key aspects of the product, such
as recovery, security, stress, performance, hardware
configurations, software configurations, etc. Testing
during production and deployment typically involves
some level of customer-acceptance criteria. Many
software companies have defined prerelease “beta”
programs with customers to accomplish this.

Current state of technology and practice

In commercial hardware development, it is a com-
mon practice to capture the requirements and spec-
ifications in a formal manner and use them exten-
sively in the development and testing of the products.
The cost of bad or imprecise specification is high and
the consequences are severe. In contrast, software
poses feasibility challenges for the capture and use
of such information. A software development orga-
nization typically faces:

● Ever-changing requirements (which, in many cases,
are never written down)

● Software engineers’ lack of skills in formal tech-
niques

● Enormous time pressure in bringing product to
market

● Belief in the malleability of software—that what-
ever is produced can be repaired or enhanced later

Consequently, in most software organizations, nei-
ther the requirements nor the resulting specifications
are documented in any formal manner. Even if writ-
ten once, the documents are not kept up to date as
the software evolves (the required manual effort is
too burdensome in an already busy schedule). Spec-
ifications captured in natural languages are not eas-
ily amenable to machine processing.

Should one wish to go beyond fuzzy specifications
written in a natural language, there is a long history
of many intellectually interesting models and tech-
niques12–14 that have been devised to formally de-
scribe and prove the correctness of software: Hoare-
style assertions, Petri nets, communicating sequential
processes, temporal logic, algebraic systems, finite
state specifications, model checking, and interval log-
ics. A key aspect of formal modeling is that the level
of detail needed to capture the adequate aspects of
the underlying software program can be overwhelm-
ing. If all of the details contained in the program are
necessary to produce the specification or test cases,
then the model may well be at least as large as the
program, thus lessening its attractiveness to the soft-
ware engineers. For example, there have been sev-
eral attempts to model software programs as finite
state machines (FSMs). While FSMs have been suc-
cessful in the context of embedded systems and pro-
tocol verification, state-based representation of soft-
ware leads to explosion in the number of states very
quickly. This explosion is a direct result of software
constructs such as unbounded data structures, un-
bounded message queues, the asynchronous nature
of different software processes (without a global syn-

Figure 3 Typical stages of testing within IBM

UNIT TEST/CODE
INSPECTION

SOLUTION
INTEGRATION TEST
OF MANY PRODUCTS

FUNCTION/
COMPONENT
TEST

M = MODULE F = FUNCTION P = PRODUCT

MODULE

M2

P3
P2

P4

P5

P1

M3 M1
F2

F1

SYSTEM/
INTEGRATION OR
PRODUCT TEST

F4

F3

IBM SYSTEMS JOURNAL, VOL 41, NO 1, 2002 HAILPERN AND SANTHANAM 7

chronizing clock), and so on. In order to be relevant
and manageable, software models have to use tech-
niques such as symbolic algorithms, partial order re-
duction, compositional reasoning, abstraction, sym-
metry, and induction.12

There are many formal languages, such as Z, SDL
(Specification and Description Language), and
Promela, that can be used to capture specifications,
but they are used consistently by only small pockets
of the industrial software community. Unlike other
areas of computer science and engineering, software
debugging, testing, and verification techniques have
evolved as practitioners’ collections of tricks, rather
than as a well-accepted set of theories or practices.

Debugging. As is well known among software engi-
neers, most of the effort in debugging involves lo-
cating the defects. Debugging is done at the small-
est level of granularity during the coding process. In
the early years of software development, defects that
escaped code reviews were found by compilation and
execution. Through a painful process (such as insert-
ing print statements for the known outputs at the
appropriate places in the program), a programmer
could locate the exact location of the error and find
a suitable fix.

Even today, debugging remains very much an art.
Much of the computer science community has largely
ignored the debugging problem.15 Eisenstadt16 stud-
ied 59 anecdotal debugging experiences and his con-
clusions were as follows: Just over 50 percent of the
problems resulted from the time and space chasm
between symptom and root cause or inadequate de-
bugging tools. The predominant techniques for find-
ing bugs were data gathering (e.g., print statements)
and hand simulation. The two biggest causes of bugs
were memory overwrites and defects in vendor-sup-
plied hardware or software.

To help software engineers in debugging the pro-
gram during the coding process, many new ap-
proaches have been proposed and many commer-
cial debugging environments are available.
Integrated development environments (IDEs) pro-
vide a way to capture some of the language-specific
predetermined errors (e.g., missing end-of-statement
characters, undefined variables, and so on) without
requiring compilation. One area that has caught the
imagination of the industry is the visualization of the
necessary underlying programming constructs as a
means to analyze a program.17,18 There is also con-

siderable work in trying to automate the debugging
process through program slicing.19

When the testing of software results in a failure, and
analysis indicates that the test case is not the source
of the problem, debugging of the program follows
and the required fix is determined. Debugging dur-
ing testing still remains manual, by and large, de-
spite advances in test execution technology. There
is a clear need for a stronger (automatic) link be-
tween the software design (what the code is intended
to do), test creation (what the test is trying to check),
and test execution (what is actually tested) processes
in order to minimize the difficulty in identifying the
offending code when a test case fails. Debugging dur-
ing production or after deployment is very compli-
cated. Short of using some advanced problem de-
termination techniques for locating the specific
defect or deficiency that led to the unexpected be-
havior, this debugging can be painful, time consum-
ing, and very expensive. The problems are exacer-
bated when problem determination involves multiple
interacting software products. As debugging moves
away from actual programming of the source code
(for example, in system test, or even later in customer
beta test), problem determination becomes even
more manual and time-consuming.

Verification. As discussed earlier, in order to verify
the functional correctness of a program, one needs
to capture the specifications for the program in a for-
mal manner. This is difficult to do, because the de-
tails in even small systems are subtle and the exper-
tise required to formally describe these details is
great. One alternative to capturing a full formal spec-
ification is to formalize only some properties (such
as the correctness of its synchronization skeleton)
and verify these by abstracting away details of the
program. For network protocols, reactive systems,
and microcontroller systems, the specification of the
problem is relatively small (either because the pro-
tocols are layered with well-defined assumptions, in-
puts, and outputs, or because the size of the program
or the generality of the implementation is restricted)
and hence tractable by automatic or semiautomatic
systems. There is also a community that builds a
model representing the software requirements and
design12,13 and verifies that the model satisfies the
program requirements. However, this does not as-
sure that the implemented code satisfies the prop-
erty, since there is no formal link between the model
and the implementation (that is, the program is not
derived or created from the model).

HAILPERN AND SANTHANAM IBM SYSTEMS JOURNAL, VOL 41, NO 1, 20028

Historically, software verification has had little im-
pact on the real world of software development. De-
spite the plethora of specification and verification
technologies, the problem has been in applying these
techniques and theories to full-scale, real-world pro-
grams. Any fully detailed specification must, by its

very nature, be as complex as the actual program.
Any simplification or abstraction may hide details
that may be critical to the correct operation of the
program. Similarly, any proof system that can au-
tomatically verify a real program must be able to han-
dle very complex logical analyses, some of which are
formally undecidable. The use of complex theorem-
proving systems also requires a high skill level and
does not scale to large programs. The human factor
also enters into the equation: crafting a correct spec-
ification (especially one using an obscure formal sys-
tem) is often much more difficult than writing the
program to be proved (even one written in an ob-
scure programming language).20 To date, success in
program verification has come in restricted domains
where either the state space of the problem is con-
strained or only a portion of the program is actually
verified. General theorem provers, model checkers,
state machine analyzers, and tools customized to par-
ticular applications have all been used to prove such
systems.

Testing. Dijkstra’s criticism,21 “Program testing can
be used to show the presence of bugs, but never to
show their absence” is well known. From his point
of view, any amount of testing represents only a small
sampling of all possible computations and is there-
fore never adequate to assure the expected behav-
ior of the program under all possible conditions. He
asserted that “the extent to which the program cor-
rectness can be established is not purely a function
of the program’s external specifications and behav-
ior but it depends critically upon its internal struc-
ture.” However, testing has become the preferred
process by which software is shown, in some sense,
to satisfy its requirements. This is primarily because
no other approach based on more formal methods
comes close to giving the scalability and satisfying

the intuitive “coverage” needs of a software engi-
neer. Hamlet22 linked good testing to the measure-
ment of the dependability of the tested software, in
some statistical sense. The absence or presence of
failures as exposed by testing alone does not mea-
sure the dependability of the software, unless there
is some way to quantify the testing properties to be
certain that adequate dimensions of testing, which
include the testability of the target software, were
covered. Test planning techniques10,11 based on par-
titioning of the functionality, data, end-user oper-
ational profiles,23 and so on are very useful and pop-
ular in testing research and among practitioners.
Many of the current technologies in testing are based
on these ideas.

Test metrics. As discussed earlier, testing is, indeed,
a sampling of the program execution space. Conse-
quently, the natural question arises: when do we stop
testing? Given that we cannot really show that there
are no more errors in the program, we can only use
heuristic arguments based on thoroughness and so-
phistication of testing effort and trends in the result-
ing discovery of defects to argue the plausibility of
the lower risk of remaining defects. Examples of met-
rics used24 during the testing process that target de-
fect discovery and code size are: product and release
size over time, defect discovery rate over time, de-
fect backlog over time, and so on. Some practical
metrics that characterize the testing process are: test
progress over time (planned, attempted, actual), per-
centage of test cases attempted, etc. In some orga-
nizations, the use of test coverage metrics (e.g., code
coverage) are used to describe the thoroughness of
the testing effort. The use of Orthogonal Defect Clas-
sification (ODC) methodology25 allows a more seman-
tic characterization of both the nature of the defects
found and the thoroughness of the testing process.

Static testing—source code analysis. Analysis of source
code to expose potential defects is a well-developed
branch of software engineering.26 The typical mode
of operation is to make the target code available to
a code analysis tool. The tool will then look for a
class of problems and flag them as potential candi-
dates for investigation and fixes. There are clear ben-
efits in source code analysis: it can be done before
an executable version of the program exists. A cer-
tain class of faults, for example memory leaks, are
more easily exposed by analysis than by testing. A
fault is more easily localized, since the symptoms tend
to be close to the cause. Typical analyses performed
will involve a compiler or parser, tied to the language
of the program, that builds a representation, such

Any proof system that can
automatically verify a real program

must be able to handle very
complex logical analyses.

IBM SYSTEMS JOURNAL, VOL 41, NO 1, 2002 HAILPERN AND SANTHANAM 9

as a call graph, a control graph, or a data flow graph,
of the program. Many commercial and research tools
are available in this area.

Test automation. There are four major parts to any
testing effort: test case design, test case creation, test
case execution, and debugging. Due to the sheer vol-
ume of testing required, most organizations are mov-
ing from testing primarily in manual mode to auto-
mation. Due to the complexity of the issues to be
considered, the activity that is most easily amenable
for automation is test execution. This assumes that
the test cases are already manually defined and writ-
ten (or captured via a tool) and can be executed in
an automated test execution environment in terms
of scheduling, logging of results (success or failure),
capturing of details of the failing environment, and
so on. For testing that requires the explicit use of
graphical user interfaces, the automation of test case
execution has already produced major productivity
gains across the industry. There are a number of com-
mercial and research test tools available.

Automation of test case design (and hence test case
creation) is another matter.11,27 In order to automate
functional test case design, we need a formal descrip-
tion of the specifications of the software behavior,
resulting in a model of the software behavior. As dis-
cussed earlier, this formal description is not captured
in typical commercial organizations. While the use
of finite state machine technology28 is beginning to
take hold in the model-checking community, its use
in the broader industrial software testing commu-
nity is limited at best. The increasing adoption of UML
(Unified Modeling Language) by software develop-
ers as the design language may provide the first op-
portunity for a widely used technique to capture a
more formal description of software specifications.
However, UML still lacks the constructs to be an effec-
tive language for capturing realistic test case spec-
ifications.29,30

Regression testing. For software that has undergone
many releases, one of the nagging questions has been
the validation of the specifications of prior releases
against the current release.31 This is typically done
via the execution of “regression” test cases (those
used to validate prior releases) against the current
release. In most real-world environments, there is
no automated traceability established among test
cases (that is, no one knows why the test case was
added or if it is still valid). In addition, the relation-
ship between code requirements and their imple-
mentation is not tracked between releases. Hence

regression testing not only checks that earlier spec-
ifications are still valid, but also catches backward-
compatibility problems. While there is a clear need
to keep adding to the regression test suite, based on
concerns about the cumulative specifications against
the current release, the inadequate information cap-
tured makes it impossible to prune the regression
suite as the product evolves.32 This is another area
where automated test case design can help, since the
test cases will be naturally linked to the specifica-
tion and the traceability will be built in.

Conclusions

We have only scratched the surface of debugging,
testing, and verification in this paper. Other signif-
icant work can be found on automated debugging,33

coverage-based testing techniques,34 performance
testing and analysis,35 and concurrent and distrib-
uted testing.36

Testing and verification of software, as a discipline,
has concentrated on the implementation portion of
the software life cycle: take a specification (often
written in a fuzzy way) and then write a working pro-
gram that can be tested or verified. There has been
some work on the specification stage of the life cy-
cle: automatically producing formal specifications
from the informal high-level descriptions, but there
has been little related work on the other end of the
life cycle: deployment and maintenance.

Testing and verification are always done in a con-
text and rely on a base set of assumptions. Unfor-
tunately the assumptions are often unstated and are
frequently unmet in real-world environments. How
often has a new version of a piece of software failed
because of some unplanned-for device driver, or
some competing piece of software that grabs con-
trol of an interrupt? How then is one to test or ver-
ify subsequent upgrades of or patches to existing soft-
ware? There has been work on specifying and testing
components and then combining them into full sys-
tems, but that work depends on, and thus is no fur-
ther along than, the general techniques of specifi-
cation and testing. It falls prey to the same fragility
of the assumptions of the individual components.
This has been further complicated because the three
topics of debugging, testing, and verification are
treated by different groups of experts with different
backgrounds, different conferences, and different
journals, usually precluding any integration of ideas
or techniques. This clearly points to the need to treat
and teach software engineering as a holistic disci-

HAILPERN AND SANTHANAM IBM SYSTEMS JOURNAL, VOL 41, NO 1, 200210

pline, rather than a collection of tricks and tools that
experienced programmers know how to exploit. Per-
haps this special issue can lead the way to this ho-
listic view of the three areas, so that software en-
gineers everywhere can enjoy the fruits of the new
technologies that are being developed in the labo-
ratories.

Acknowledgments

We thank Melissa Buco for programming support
and Joanne Bennett for administrative support in
the planning and coordination of this special issue
on testing and verification.

Cited references

1. F. P. Brooks, The Mythical Man-Month: Essays on Software
Engineering, Anniversary Edition, Addison-Wesley Longman,
Reading, MA (1995).

2. G. J. Myers, Software Reliability: Principles and Practices, John
Wiley & Sons, Inc., New York (1976).

3. Glossary of Software Engineering Terminology, ANSI/IEEE
Standard 729-1983, IEEE Standard, IEEE, NY (1983).

4. M. S. Deutsch, Software Verification and Validation: Realistic
Project Approaches, Prentice-Hall, Inc., Englewood Cliffs, NJ
(1982).

5. R. S. Pressman, Software Engineering: A Practitioner’s Ap-
proach, McGraw-Hill, New York (1992).

6. IEEE Guide to the Use of IEEE Standard Dictionary of Mea-
sures to Produce Reliable Software, IEEE Standard 982.2-1988,
IEEE, New York (1989).

7. W. S. Humphrey, Managing the Software Process, Addison-
Wesley Publishing Co., Reading, MA (1990).

8. N. Francez, Program Verification, Addison-Wesley Publish-
ing Co., Reading, PA (1992).

9. M. E. Fagan, “Design and Code Inspections to Reduce Er-
rors in Program Development,” IBM Systems Journal 15, No.
3 (1976).

10. G. J. Myers, The Art of Software Testing, John Wiley & Sons,
Inc., New York (1976).

11. B. Beizer, Software Testing Techniques, Van Nostrand Rein-
hold, New York (1990).

12. E. M. Clarke, O. Grumberg, and D. A. Peled, Model Check-
ing, MIT Press, Cambridge, MA (2000).

13. Model Checking Software, Proceedings, Eighth International
SPIN Workshop, Toronto, Canada (May 19–20, 2001).

14. K. R. Apt and E. R. Olderog, Verification of Sequential and
Concurrent Programs, Second Edition, Springer-Verlag, Hei-
delberg (1997).

15. H. Lieberman, “The Debugging Scandal and What to Do
About It,” Communications of the ACM 40, No. 4, 26–29
(April 1997).

16. M. Eisenstadt, “My Hairiest Bug War Stories,” Communi-
cations of the ACM 40, No. 4, 31–37 (April 1997).

17. R. Baecker, C. DiGiano, and A. Marcus, “Software Visual-
ization for Debugging,” Communications of the ACM 40, No.
4, 44–54 (April 1997), and other papers in the same issue.

18. W. De Pauw and G. Sevitsky, “Visualizing Reference Pat-
terns for Solving Memory Leaks in Java,” Lecture Notes in
Computer Science 1628, Springer-Verlag, Heidelberg (1999),

pp. 116–134 (Proceedings, European Conference on Object-
Oriented Programming, Lisbon, Portugal).

19. S. Horowitz, T. Reps, and D. Binkley, “Interprocedural Slic-
ing Using Dependence Graphs,” ACM Transactions on Pro-
gramming Languages and Systems 12, No. 1, 26–60 (January
1990).

20. W. Polak, “Compiler Specification and Verification,” Lec-
ture Notes in Computer Science 124, Springer-Verlag, Heidel-
berg (1981).

21. E. W. Dijkstra, “Notes on Structured Programming,” Struc-
tured Programming, O.-J. Dahl, E. W. Dijkstra, and C. A. R.
Hoare, Editors, Academic Press, London (1972), pp. 1–82.

22. D. Hamlet, “Foundations of Software Testing: Dependabil-
ity Theory,” Software Engineering Notes 19, No. 5 (Proceed-
ings of the Second ACM SIGSOFT Symposium on Founda-
tions of Software Engineering), 128–139 (1994).

23. J. Musa, Software Reliability Engineering, McGraw-Hill, Inc.,
New York (1998).

24. S. H. Kan, J. Parrish, and D. Manlove, “In-Process Metrics
for Software Testing,” IBM Systems Journal 40, No. 1, 220–
241 (2001).

25. K. Bassin, T. Kratschmer, and P. Santhanam, “Evaluating
Software Development Objectively,” IEEE Software 15, No.
6, 66–74 (1998).

26. D. Brand, “A Software Falsifier,” Proceedings, Eleventh IEEE
International Symposium on Software Reliability Engineering,
San Jose, CA (October 8–11, 2000), pp. 174–185.

27. R. M. Poston, Automating Specification-Based Software Test-
ing, IEEE Computer Society Press, Los Alamitos, CA (1996).

28. D. Lee and M. Yannakakis, “Principles and Methods of Test-
ing Finite State Machines—A Survey,” Proceedings of the
IEEE 84, No. 8, 1090–1123 (1996).

29. A. Paradkar, “SALT—An Integrated Environment to Au-
tomate Generation of Function Tests for APIs,” Proceedings,
Eleventh IEEE International Symposium on Software Reliabil-
ity Engineering, San Jose, CA (October 8–11, 2000), pp. 304–
316.

30. C. Williams, “Toward a Test-Ready Meta-Model for Use Cas-
es,” Proceedings, Workshop on Practical UML-Based Rigor-
ous Development Methods, Toronto, Canada (October 1,
2001), pp. 270–287.

31. J. A. Whittaker, “What Is Software Testing? And Why Is It
So Hard?” IEEE Software 17, No. 1, 70–79 (January/February
2000).

32. M. J. Harrold, J. Jones, T. Li, D. Liang, A. Orso, M. Pen-
nings, S. Sinha, S. Spoon, and A. Gujarathi, “Regression Test
Selection for Java Software,” Proceedings, ACM Conference
on Object-Oriented Programming, Systems, Languages, and Ap-
plications, Tampa, FL (October 14–18, 2001).

33. A. Zeller, “Yesterday, My Program Worked. Today, It Does
Not. Why?” Proceedings, 7th European Engineering Confer-
ence held jointly with the 7th ACM SIGSOFT Symposium on
Foundations of Software Engineering, Toulouse, France (Sep-
tember 6–10, 1999), pp. 253–267.

34. M. Benjamin, D. Geist, A. Hartman, G. Mas, R. Smeets, and
Y. Wolfsthal, “A Study in Coverage-Driven Test Generation,”
Proceedings, 36th Design Automation Conference, New Or-
leans, LA (June 21–25, 1999), pp. 970–975.

35. F. I. Vokolos and E. J. Weyuker, “Performance Testing of
Software Systems,” Proceedings, First ACM SIGSOFT Inter-
national Workshop on Software and Performance, Santa Fe,
NM (October 12–16, 1998), pp. 80–87.

36. R. H. Carver and K.-C. Tai, “Replay and Testing for Con-
current Programs,” IEEE Software 8, No. 2, 66–74 (March
1991).

IBM SYSTEMS JOURNAL, VOL 41, NO 1, 2002 HAILPERN AND SANTHANAM 11

Accepted for publication November 20, 2001.

Brent Hailpern IBM Research Division, Thomas J. Watson Re-
search Center, P.O. Box 704, Yorktown Heights, New York 10598-
0704 (electronic mail: bth@us.ibm.com). Dr. Hailpern received
his B.S. degree, summa cum laude, in mathematics from the Uni-
versity of Denver in 1976, and his M.S. and Ph.D. degrees in com-
puter science from Stanford University in 1978 and 1980, respec-
tively. His thesis was titled, “Verifying Concurrent Processes Using
Temporal Logic.” Dr. Hailpern joined the IBM Thomas J. Watson
Research Center as a research staff member in 1980. He worked
on and managed various projects relating to issues of concurrency
and programming languages. In 1990, Dr. Hailpern joined the
Technical Strategy Development staff in IBM Corporate Head-
quarters, returning to the Research Division in 1991. Since then
he has managed IBM Research departments covering operating
systems, multimedia servers, Internet technology, and pervasive
computing. He was also the client product manager for the IBM
NetVistaTM education software product, for which he received
IBM’s Outstanding Innovation Award. Since 1999, he has been
the Associate Director of Computer Science for IBM Research.
Dr. Hailpern has authored 12 journal publications and 13 United
States patents, along with numerous conference papers and book
chapters. He is a past secretary of the ACM, a past chair of the
ACM Special Interest Group on Programming Languages (SIG-
PLAN) and a Fellow of the IEEE. He was the chair of the SIG-
PLAN ’91 Conference on Programming Language Design and
Implementation and was chair of SIGPLAN’s OOPSLA ’99 Con-
ference. In 1998, he received SIGPLAN’s Distinguished Service
Award. He is currently chair of the OOPSLA Conference Steer-
ing Committee and an associate editor for ACM’s Transactions
on Programming Languages and Systems (TOPLAS).

Padmanabhan Santhanam IBM Research Division, Thomas J.
Watson Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (electronic mail: pasanth@us.ibm.com). Dr. Santhanam
holds a B.Sc. degree from the University of Madras, India, an
M.Sc. from the Indian Institute of Technology, Madras, an M.A.
degree from Hunter College, The City University of New York,
and a Ph.D. degree in applied physics from Yale University. He
joined IBM Research in 1985 and has been with the Center for
Software Engineering, which he currently manages, since 1993.
He has worked on deploying Orthogonal Defect Classification
across IBM software labs and with external customers. His in-
terests include software metrics, structure-based testing algo-
rithms, automation of test generation, and realistic modeling of
processes in software development and service. Dr. Santhanam
is a member of the ACM and a senior member of the IEEE.

HAILPERN AND SANTHANAM IBM SYSTEMS JOURNAL, VOL 41, NO 1, 200212

http://www.kekaoxing.com

