
Paper Number 04M-105 

Stochastic Approach for Vehicle Crash Models 

David S. Riha 
Southwest Research Institute 

Joseph Hassan, Marlon Forrest and Ke Ding 
Chrysler Group, DaimlerChrysler Corporation 

Copyright © 2003 SAE International

ABSTRACT 

This paper describes the development of a mathematical 
model capable of providing realistic simulations of 
vehicle crashes by accounting for uncertainty in the 
model input parameters. Advanced and efficient 
probabilistic and reliability analysis methods are coupled 
with well-established, high fidelity finite element and 
occupant modeling software to predict the reliability of 
vehicle impact scenarios. 

The NESSUS probabilistic analysis software was used 
as the framework for a stochastic crashworthiness FE 
model.  The LS-DYNA finite element model of vehicle 
frontal offset impact and the MADYMO model of a 50th 
percentile male Hybrid III dummy were integrated with 
NESSUS to comprise the crashworthiness 
characteristics. Response quantities from the models 
were used to define four occupant injury acceptance 
criteria and six compartment intrusion criteria. These ten 
acceptance criteria were used as events in a 
probabilistic fault tree to compute the overall system 
reliability of the impact scenario. A response surface 
model was developed for each acceptance criteria to 
facilitate the probabilistic analysis and vehicle design 
tradeoff studies. 

NESSUS was used to compute the reliability of each 
acceptance criteria and the system reliability by 
combining all acceptance criteria events into a 
probabilistic fault tree. A redesign analysis was 
performed using the computed probabilistic sensitivity 
factors to direct design changes. These sensitivities 
were used to identify the most effective changes in 
model parameters to improve the reliability. A redesign 
using 11 design modifications was performed that 
increased the original reliability from 23% to 86%. 
Several of the design changes include increasing the rail 
material yield strength and reducing its variation, 
reducing the variation of the bumper and rail installation 
tolerances, and increasing the rail weld stiffness and 
reducing its variation. The NCAP star rating was also 
computed for the original and final designs as another 
measure of vehicle performance. 

Finally, the response surface models were compared to 
the actual numerical models to verify their accuracy. 
Accuracy, benefits and limitations of the response 
surface approach for crashworthiness models is also 
discussed. The results show that major reliability 
improvements for occupant injury and compartment 
intrusion can be realized by certain specific 
modifications to the model input parameters. A 
traditional (deterministic) method of analysis would not 
have suggested several of these modifications. 

INTRODUCTION 

Numerical methods are widely used for the analysis of the 
impact behavior. The most commonly used computational 
methods for vehicle impact analysis is the rigid body 
formulation implemented in codes such as MADYMO and 
PAM-SAFE and the finite element method implemented in 
codes such as LS-DYNA, PAM-CRASH and RADIOSS. 
Using these codes, designs of almost any arbitrary 
complexity and physical behavior can be investigated for 
their impact responses. This way, a large number of 
variations and design modifications can be compared 
effectively. From the results of computational simulations, 
conclusions can be drawn to develop understanding of the 
impact response. The determination of such changes is 
usually driven by the experience of the engineer.  

A typical CAE simulation for crash and safety analysis 
requires the use of a wide range of input parameter 
classes such as dimensions, material properties, 
geometrical constraints, boundary approximations and 
numerical assumptions. Geometry is obtained from a 
“typical” test setup, which is considered to be an 
accurate representation of the test being simulated. 
However, a single impact test is insufficient to capture 
the relevant physics of the characteristic response of a 
vehicle and occupants subjected to impact conditions. 

Metallic material properties used in crash analysis suffer 
from uncertainty in characteristics such as yield, 
strength, strain hardening and others. Typical scatter 
values are between 5 to 10%. Uncertainty is even higher 
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for properties such as strain rate, foam material 
definitions and weld characteristics. 

With regard to reliability, the design procedure usually 
entails comparing analysis results to those of a design 
guide, or for the case of safety and crash, some NHTSA 
requirement. The problem with this approach is that it 
does not take into account (in a quantifiable manner) the 
fact that there is inevitably some element of uncertainty 
in the basic design parameters, such as material 
properties, tolerances, and loadings. In this work, the 
influence of parameters such as uncertainty in weld 
quality (stiffness, failure strength), uncertainty in various 
material properties (yield, ultimate strength, strain 
hardening), uncertainty in local thickness of stamped 
parts and finally imperfections due to actual assembly 
processes, were used as input variables. 

STOCHASTIC ANALYSIS OF VEHICLE IMPACT 
SIMULATION 

Uncertainties and non-deterministic behavior exist in all 
physical processes that are known as the core 
applications of occupant response simulation using 
numerical formulations such as the case in LS-DYNA [1] 
and MADYMO [2]. Car crash and occupant safety are 
applications of impact-type problems that are highly non-
deterministic, as such repeated collision tests of the 
same vehicle type will always lead to different results.  

The idea behind probabilistic structural analysis is to use 
the information about the probability of random 
variables, along with the structural behavior, in order to 
quantify the scatter in the structural response. The result 
from the analyses is a distribution in the form of a 
Probability Distribution Functions (PDF) and Cumulative 
Distribution Function (CDF), of the structural response. 
Thus, the analysis gives a more complete picture of the 
actual simulation. With this method, the probability of 
achieving a certain level of structural response can be 
computed. While the conventional Probabilistic 
Structural analysis (PSA) considers the uncertain 
quantities as random variables, in Stochastic Structural 
analysis (SSA) they are modeled as random fields, as 
such, they are considered as sequences of random 
variables spread over the volume of the structure object 
with a defined correlation structure. Therefore, the 
consideration of randomness in this regard is more 
elaborate since it is assumed that the parameters of the 
model have a random spatial variation [3].   

The concept of a stochastic crash simulation can be 
explained due to the fact that the problem comprises a 
set of stochastic structural parameters, stochastic 
external forces and boundary conditions and, finally, the 
stochastic output variables such as displacements, 
accelerations, and internal energies.  The stochastic 
crash problem may be stated, in general terms as 
follows: Given the Probability Density Functions (PDFs) 
of the stochastic structural parameters, external forces, 
boundary and initial conditions, determine the 
corresponding PDFs of the output variables.  

In generic mathematical terms, crash is a dynamic 
phenomenon that may be formally described by a set of 
nonlinear first order vector differential equations in the 
form; 

x  =f (x,F,p) 

y =g (x,p) 

where  x  ε RN  is the state vector of displacements and 
velocities, F ε Rp  represents the stochastic external 
forcing terms,   p ε Rn  is a vector of stochastic structural 
parameters and y ε Rq the measurement vector (e.g. 
accelerations, strains, etc.). A classical problem in 
stochastic mechanics is the computation of the 
Probability Distribution Functions (PDFs) of the output 
variables given the PDFs of the input variables.  This 
can be accomplished by knowing the joint density 
function of all the random variables implied in a specific 
problem. The most widely used technique to estimate 
the required joint density function is the Nataf model, 
which uses a multidimensional Gaussian distribution 
with correlation coefficients modified according to the 
non linear transformation linking the given marginal and 
the Gaussian densities.   The corresponding samples of 
the correlated variables can then be generated by 
means of this approximate distribution. 

The objective of this work was to develop a 
mathematical model capable of providing realistic 
simulations of vehicle crashes by accounting for 
uncertainty in the model input parameters. The 
stochastic crashworthiness model consists of ten 
acceptance criteria. The performance models for each 
acceptance criteria are defined using stochastic based 
software called NESSUS [4,5]. NESSUS is an advanced 
probabilistic analysis code developed by Southwest 
Research Institute. The LS-DYNA explicit dynamic finite 
element software is used to compute the time-
dependent structural response of the vehicle due to 
frontal impact loads. Response quantities such as 
acceleration and displacement are used for the 
compartment intrusion performance measures and as 
input to the MADYMO occupant response program to 
compute occupant injury measures. The LS-DYNA finite 
element model and the MADYMO model of a 50th 
percentile male Hybrid III dummy are integrated with 
NESSUS to comprise the crashworthiness model. This 
integrated model provides an automatic and flexible 
uncertainty analysis procedure to allow the modeler the 
ability to simulate uncertainties in any LS-DYNA and 
MADYMO input variables. The modeler can easily select 
any relevant model responses to define a wide range of 
acceptance criteria measures.  The problem setup, 
analysis and interpretation of results are all handled 
through the NESSUS graphical user interface. 

STOCHASTIC MODEL 

For the analysis reported herein, ten acceptance criteria 
are used to evaluate the crashworthiness of the vehicle-



to-vehicle frontal offset impact model. These criteria 
include four occupant injury and six compartment 
intrusion measures. 

Uncertainty inputs to the model consist of 20 random 
variables. These random variables include parameters 
that define key energy absorbing components of the 
vehicles such as material properties for bumpers and 
rails, test environment uncertainties such as impact 
velocity and angle, and manufacturing variations in the 
form of rail and bumper installation parameters. Each of 
these random variables is characterized by a statistical 
distribution defined from manufacturing data, literature 
and/or expert opinion. 

A probabilistic system reliability analysis is required to 
correctly evaluate the vehicle performance, especially 
for computing the probabilistic sensitivity factors at the 
system level for redesign analysis. For example, certain 
parameters such as stiffness/strength parameters can 
improve the reliability for compartment intrusion 
performance measures, but they may be detrimental to 
the crash pulse attenuation seen by the vehicle’s 
occupant. The probabilistic system model correctly 
accounts for events with common variables (correlated 
events) and thus correctly identifies the important 
variables on the system level. 

The probabilistic fault tree capability was used to 
develop the system reliability model. System reliability 
for this analysis is the probability of meeting the 
combination of all ten acceptance criterion. The model 
consists of the ten acceptance criteria defined by the 
RSM performance functions. The probabilistic fault tree 
analysis was also used to compute probabilistic 
sensitivity factors. These sensitivities are the derivatives 
of the probability of failure with respect to the random 
variable parameters (mean and standard deviation). The 
magnitude and direction of the sensitivities indicate the 
variables that contribute most to the reliability. For the 
original design it was determined that the yield stress of 
the small vehicle rail material contributes most to the 
reliability of the design. 

To facilitate the probabilistic analysis and a reliability 
improvement study, a response surface model (RSM) is 
developed for each acceptance criteria performance 
model. The RSM approach aids in reducing the number 
of required LS-DYNA and MADYMO analyses and 
provides a fast running function that can be used for 
design trade off studies. 

COMPONENT PROBABILISTIC AND RELIABILITY 
ANALYSIS 

One of the key outputs of this approach is the 
cumulative distribution function (CDF) of system 
performance (e.g. stress or strain). The CDF is the 
probability that the performance value is less than or 
equal to a specified value. Traditional reliability analysis 
involves computing the probability that the stress (S) will 
exceed the strength (R), or P[g<0] where 

g = R - S 

R and S may be complex models involving other random 
variables such as R(Xi) and S(Yi).  The g-function is 
formulated such that g=g(Xi,Yi) and thus correctly 
accounts for possible correlation between the stress and 
strength parts of the performance measure (i.e., 
common random variables in R and S). This approach 
provides a general formulation of the g-function that 
allows different analysis codes and analytical functions 
to be linked together in a hierarchical fashion.  For 
example, a stress or strain from a finite element analysis 
can be used with a fatigue life equation or S-N curve to 
define the performance of a structure. 

SYSTEM RELIABILITY ANALYSIS 

Most engineering structures have multiple conditions 
that are evaluated for acceptable performance. These 
events are defined by different acceptable conditions of 
a component or multiple component/conditions of a 
system. The nonperformance of one or a combination of 
events can lead to nonperformance of the system. 
System reliability considers acceptable performance of 
multiple components of a system and/or acceptable 
conditions of a component. Many options are available 
for predicting system reliability including bounding 
methods, boolean combinations of the event 
probabilities (with and without assuming the events are 
independent) and brute force Monte Carlo simulation 
[6,7]. System reliability in NESSUS is currently 
addressed using a probabilistic fault tree analysis 
(PFTA) method [8,9]. 

System reliability is defined through a fault tree by 
defining the bottom events and their combination with 
“AND” and “OR” gates.  Each bottom event considers a 
single performance event (component reliability) and can 
be defined by a finite element model and performance 
function or as an analytical equation. An example of a 
fault tree for a three-event system is shown in Figure 1. 

AND

OR

System 
Reliability

Event 1 Event 2 Event 3

 
Figure 1.  Example of a Fault Tree for System Reliability 

Analysis in NESSUS 
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RESPONSE SURFACE METHODS 

The response surface approach for probabilistic analysis 
can be used to replace a computationally intensive 
function evaluation with a fast-running polynomial 
expression. Several components are required for 
performing probabilistic analysis using a response 
surface as shown in Figure 2. 

• Experimental design 
• Model fitting/ANOVA 
• Probabilistic Analysis (usually simulation) 

 
Choose Design Method
  - Central Composite
  - Box-Behnken
  - Koshal 
  - etc.

Perturbation Analysis

Pert   X1  X2  ...  Xn    Z1  Z2  ...  Zm
   1
   2    Data from numerical simulations
   :     and/or experiments
   j     

Fit Response Surface
  - Linear
  - Incomplete Quadratic
  - Complete Quadratic   

Check Response Surface
  - Goodness-of-fit
  - Residual Contours
  - ANOVA

Perform Probabilistic Analysis
  - Simulation
  - Sampling-based sensitivities
  - New expansion point

RESTART

Cumulative Distribution Function
Probabilistic Sensitivities

 Deterministic Sensitivities
 

Figure 2.  Probabilistic Analysis using a Response Surface 
Model 

Response surface models (RSM) have some unique 
advantages for performing probabilistic analysis: 

• Easy transfer of information between modelers 
• Best suited for estimating mean and standard 

deviation 
• Can incorporate test and numerical data 
• Quickly generate accurate g-functions for 

system analysis 
• Reduced number of function evaluations in 

some cases 
• Fast running function that can be used for 

design tradeoff studies 
 
While the RSM is a powerful tool for the probabilistic 
analyst, there are some disadvantages to its use: 

• May not be accurate for small probabilities 
• Difficult to assess error without rerunning the 

original function in the design region 
• Typically not as efficient as AMV+ 

 
PROBABILISTIC SENSITIVITY FACTORS 

As part of the probabilistic analysis, the probabilistic 
sensitivity measures are computed in the form of the 
derivatives of the probability of failure with respect to the 
random variable parameters: 

 and 
i i

p p
µ σ
∂ ∂
∂ ∂  

  

Where i is the particular random variable, p is the 
probability, and µ and σ are the mean and standard 
deviation of the ith random variable respectively.  

MONTE CARLO SIMULATION 

Simulation methods repeatedly evaluate the 
performance function to generate a sample of the 
response.  The response samples are used to estimate 
the mean, standard deviation or other statistics.  For 
simulation methods, there is no requirement that the 
response function be well behaved or that there is any 
practical restriction on the number of random variables 
as there are with most probable point based methods.  
The Monte Carlo simulation method uses random 
samples from the probability distributions of each 
random variable and computes the response.  The 
reliability is computed by counting the number of 
acceptable evaluations of the performance function.  
Other information can be obtained such as the empirical 
cumulative distribution function (CDF), probability 
distribution of the response, and moments of the 
response.  The method is exact as the number of 
simulations approaches infinity.  The major 
disadvantage to Monte Carlo simulation is that the 
analysis can be time consuming for complex 
deterministic models.  Even for fast running models the 
analysis can require a large number of samples for large 
or small reliabilities as indicated using a sampling error 
equation 

pk
p

error
⋅

−
−Φ⋅= − 1

]2/1[100% 1 α
 

In this equation, (1-α) is the confidence level, p is the 
probability, and k is the required sample size.  The 
equation states that there is a (1-α) chance that the 
%error in the estimated probability will be less than that 
given in the equation. This equation is valid for 
probabilities less than 0.5. If the probability is greater 
than 0.5 then 1- p is used to evaluate the error. 

SYSTEM RELIABILITY ANALYSIS FOR 
INDEPENDENT EVENTS 

Defining the event as a desirable outcome, then the 
intersection of all events produces the system reliability 
as: 

)...321 nEEEP(ER ∩∩∩=  
 
where Ei is the occurance of the ith event. In many 
system reliability analyses, the correlation between 
events is ignored and the events are assumed to be 
independent. If the events are assumed independent, 



then the system reliability is the product of the 
independent event reliabilities defined as: 

∏
=

=∩∩∩
n

i
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DETERMINISTIC MODEL 

The crashworthiness model used in this analysis 
simulates vehicle-to-vehicle frontal offset impact. The 
vehicles include a small car and larger SUV style vehicle 
as shown in Figure 3. The LS-DYNA finite element 
model used in this analysis was built by the National 
Crash Analysis Center (NCAC). It consists of over 
250,000 nodes and 240,000 elements and was analyzed 
using LS-DYNA version 960 on SGI and HP parallel 
platforms. The analysis time was approximately 30 CPU 
hours using 8 processors. 

The LS-DYNA model is used to compute the structure 
responses of the vehicle such as accelerations and 
displacements. These response quantities are used for 
the compartment intrusion performance measures and 
as input to MADYMO to compute occupant injury 
measures. The LS-DYNA finite element model and the 
MADYMO model with a 50th percentile male Hybrid III 
dummy are integrated with NESSUS to comprise the 
crashworthiness model. This integration framework is 
shown in Figure 4. 

 
Figure 3.  Vehicle-to-Vehicle Frontal Offset Crash 
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Figure 4.  Stochastic Crash Simulation Framework 

RANDOM VARIABLES 

Uncertainties of several parameters in the FE model are 
defined for controlled test conditions. The large vehicle 
is at rest at a specified location. The small car is 
attached to a guide and is brought to a certain impact 
velocity. The velocity direction along the guide is fairly 
certain but the attachment of the vehicle to the rail and 
location of the large vehicle introduces uncertainty. The 
test setup is shown in Figure 5. Other random variables 
include uncertainties that arise in the manufacturing 
process and inherent uncertainty of material 
characteristics. 

The distributions for parameters that affect the geometry 
are based on design/manufacturing tolerances. These 
tolerances are defined as ±3 standard deviations from 
the mean value for a process that is in statistical control. 
Table 1 lists the random variable descriptions followed 
by the probability distribution definitions in Table 2 used 
in the model. 

SMALL VEHICLE RANDOM VARIABLES 

RAIL CHARACTERISTICS 

Vehicle rails are critical components to the energy 
absorbing characteristics of the vehicle. Uncertainties in 
the rail material properties such as yield strength, elastic 
modulus, metal thickness, and weld connections are 
considered to be the main parameters driving the energy 
absorption. The yield strength of high strength steel for 
rail material (YIELDCAR) is modeled as a random 
variable as well as the elastic modulus (EMODCAR). 
Rail thickness (RAILTCAR) is also modeled as a random 
variable. Variations in sheet metal parts occur from the 
manufacturing and forming processes. The left and right 
rails are generally manufactured using the same lot of 
material and at the same time. Therefore the left and 
right rail thickness variables are modeled as a single 
random variable (fully correlated). Uncertainty also 
exists in the attachment of the rails during 
manufacturing. The right (RTOLCARR) and left rail 
assembly tolerances (RTOLCARL) are modeled as 
random variables. The uncertainty is modeled as shown 
in Figure 6 where each rail may vary in the Z-direction of 
the model. Left and right small car rails with assembly 
uncertainty are modeled as two random variables. 
Variations in the rail assembly tolerance are modeled by 
shifting the rail in the Z-direction. The uncertainty of 
each rail placement is independent and based on design 
tolerances. 

The rails are attached to the vehicle using spot welds. 
The number, size and quality of the welds affect the 
vehicles energy absorbing characteristics.  The weld 
stiffness for the front rail (FRWSTIFF), front left rail 
(LRWSTIFF), and front right rail (RRWSTIFF) were 
considered as independent random variables. The same 
distribution (lognormal) and coefficient of variation as the 
weld diameters were used for the weld stiffness. 
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Table 1.  Random Variable Description 

 Description Name 
Small Vehicle 
1 HSS yield strength YIELDCAR 

2 Elastic modulus EMODCAR 

3 Foam density FDENSCAR

4 Foam ultimate strength FOAMUCAR

5 Right rail assembly tolerance RTOLCARR

6 Left rail assembly tolerance RTOLCARL

7 Impact velocity IMPVEL 

8 Impact angle IMPANGL 

9 Bumper height BUMPER 

10 Tire height TIRE 

11 Front rail weld (effective plastic strain) FRWSTIFF 

12 Front left rail weld (effective plastic strain) LRWSTIFF 

13 Front right rail weld (effective plastic strain) RRWSTIFF 

14 Rail thickness RAILTCAR 

Large Vehicle 
15 Foam density FDENSTRK

16 Foam ultimate strength FOAMUTRK

17 Right rail assembly tolerance RTOLTRKR

18 Left rail assembly tolerance RTOLTRKL 

19 Rail thickness RAILTTRK 

20 Overlap OVERLAP 
 

Small car
Large vehicle

rail

uncertainty of 
attachement (angle)

uncertainty of 
placement (offset)

velocity along axis of the railx

y

 

Figure 5.  Model Setup  

 
Figure 6.  Left and right small car rails with assembly 

uncertainty are modeled as two random variables.

Table 2.  Random Variables Definitions 

 
Name Mean 

Standard 
Deviation Units Dist. 

Small Vehicle 

1 YIELDCAR 275 15.125 N/mm2 Log. 

2 EMODCAR 210000 10500 N/mm2 Normal

3 FDENSCAR 8.00E-10 1.2E-10 Tonne/mm3 Normal

4 FOAMUCAR 25 3.75 N/mm2 Normal

5 RTOLCARR 01 4.23333 mm Normal

6 RTOLCARL 01 4.23333 mm Normal

7 IMPVEL 15643 156.43 mm/sec Normal

8 IMPANGL 0 3.3333 degrees Normal

9 BUMPER 01 4.23333 mm Normal

10 TIRE 01 4.23333 mm Normal

11 FRWSTIFF 1.33E-03 1.33E-04 - Log. 

12 LRWSTIFF 1.33E-03 1.33E-04 - Log. 

13 RRWSTIFF 1.33E-03 1.33E-04 - Log. 

14 RAILTCAR 1.9 0.0342 mm Normal

Large Vehicle 

15 FDENSTRK 4.95E-11 7.4184E-12 Tonne/mm3 Normal

16 FOAMUTRK 210 31.5000 N/mm2 Normal

17 RTOLTRKR 01 4.23333 mm Normal

18 RTOLTRKL 01 4.23333 mm Normal

19 RAILTTRK 1.73 0.03114 mm Normal

20 OVERLAP 01 0 mm Normal
1 mean value is relative to the nominal installation position 

 

BUMPER CHARACTERISTICS 

The bumper foam density (FDENSCAR) and ultimate 
strength (FOAMUCAR) are modeled as random 
variables. The uncertainty of bumper height (BUMBER) 
is also included in the model. Uncertainty in bumper 
height arises during the attachment process in 
manufacturing and is modeled by moving the bumper 
nodal coordinates in the Z direction. The bumper is 
depicted in Figure 7. 



VEHICLE HEIGHT 

Another uncertainty is the vertical height of the vehicle 
that arises from tire inflation (TIRE). This uncertainty is 
modeled by changing the Z coordinate of the small 
vehicle with respect to the larger vehicle as shown in 
Figure 8. This uncertainty is based on design tolerances 
and test procedure requirements (±0.5 inches). 

TEST PARAMETER UNCERTAINTIES 

Several parameters cannot be controlled completely in a 
crash event and can be expected to lead to uncertainty 
in the crashworthiness performance. The impact velocity 
(IMPVEL) is modeled as random variable and the 
uncertainty is defined by the test requirements (±3%). 
The impact angle (IMPANGLE) is another uncertain 
parameter in the test and also defined by the test 
requirements (±10º). The impact angle variation is 
simulated about the small car center of gravity as shown 
in Figure 9. 

LARGE VEHICLE RANDOM VARIABLES 

All acceptance criteria for this model are for the small 
vehicle. However, uncertainties of several critical energy 
absorbing parameters in the large vehicle were also 
considered to determine their contribution to the event. 
These variables include the bumper foam density 
(FDENSTRK) and ultimate strength (FOAMUTRK), the 
left and right rail assembly tolerances (RTOLTRKL, 
RTOLTRKR), and the rail thickness. The distribution 
definitions for these parameters were obtained from 
supplier’s data. 

ACCEPTANCE CRITERIA 

Ten acceptance criteria and the NCAP star rating criteria 
were used to evaluate the crashworthiness of the 
vehicle-to-vehicle frontal offset impact test. All 
acceptance criteria are evaluated for the small vehicle.   

Occupant and Compartment Intrusion Acceptance 
Criteria 

The criteria include four occupant injury and six 
compartment intrusion measures as listed in Table 3. 
Injury measures are based on a 50th percentile male 
Hybrid III dummy in the driver seat modeled with 
MADYMO.  

The performance of each acceptance criteria is defined 
by LS-DYNA or MADYMO computed quantities. 
Information describing each of these performance 
measures is listed in Table 4. 

 

 
Figure 7.  Bumper height assembly tolerance 

 

 
Figure 8.  Tire height uncertainty is modeled by moving 

the small car nodal coordinates in the Z direction 
(distribution is not to scale) 

θ

 
Figure 9.  Impact angle uncertainty is modeled by rotating 

the small car nodal coordinates around the CG. 

Table 3.  Acceptance Criteria for the Crashworthiness 
Model 

 
Acceptance Criteria 

Assessment 
Values 

Occupant Injury  

1 Head Injury Criteria (HIC36) 1000  (36 
msec clip)1 

2 Chest acceleration (g’s) 60g1,2 

3 Chest deflection 64 (mm) 2 

4 Femur axial load 10000 (N) 1 

Passenger Compartment Intrusion  

5 Footrest intrusion 150 mm 

6 Average of left/center/right toe pan 
deflection 150 mm 

7 Brake pedal location 150 mm 

8 Average of left/right instrument panel 
(IP) deflection 100 mm 

9 Door aperture closure (measured at 
beltline on struck side) 100 mm 

10 Engine displacement relative to left B-
pillar 200 mm 

1FMVSS 208 
2”Frontal Offset Crashworthiness Evaluation: Guidelines 
for Rating Structural Performance,” Insurance Institute 
for Highway Safety, April 2002. 
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Table 4  LS-DYNA and MADYMO Model Entities that 
Define the Acceptance Criteria 

Acceptance 
Criteria 

MADYMO 
Response LS-DYNA Response 

HIC HIC Negative of X acceleration1 

Chest 
Acceleration Chest g’s Negative of X acceleration1 

Chest 
Deflection 

Chest 
Deflection Negative of X acceleration1 

Femur Axial 
Load 

Right Femur 
Compression  Negative of X acceleration1 

Footrest 
Intrusion N/A 

X-disp. B-pillar 
X-disp. footrest 

Toe Pan 
Deflection N/A 

X-disp. B-pillar 
X-disp. right toe pan 
X-disp. center toe pan 
X-disp. left toe pan 

Brake 
Location N/A 

X-disp. B-pillar 
X-disp.  Brake location 

Instrument 
Panel 
Deflection 

N/A 
X-disp. B-pillar 
X-disp. left instr. panel 
X-disp. right instr. panel 

Door Aperture 
Closure N/A 

X-disp. B-pillar 
X-disp.  forward door frame 
X-disp. rear door frame 

Engine 
Displacement N/A 

X-disp. B-pillar 
X-disp. Engine 

1 crash pulse 

NCAP VEHICLE STAR RATING CRITERION 

The New Car Assessment Program (NCAP) vehicle star 
rating value is also evaluated to determine the star rating 
for the design. The star rating is used to express the 
chance of incurring a serious injury in the event of a 
crash. In the explanation of ratings listed in Table 5, a 
serious injury is one requiring immediate hospitalization 
and may be life threatening. 

Table 5.  NCAP Vehicle Star Rating System 

Rating Probability of Serious Injury 
 0.0 < P ≤ 0.1 

 0.1 < P ≤ 0.2 
 0 .2< P ≤ 0.35 

 0.35 < P ≤ 0.45 
 0.45 < P 

 

The NHTSA (Docket No. 97-29) computations of the 
probability for the head injury criteria (HIC) and the chest 
acceleration (CHEST_G) are defined by: 

HIChead e
P *00351.002.51

1
−+

=
 

GCHESTchest e
P _*0693.055.51

1
−+

=
 

The nominal values for HIC and CHEST_G are used for 
these probability calculations. The combined probability 
of serious injury for both the head and chest criteria is 
given by the system probability using the independent 
event assumption:  

chestheadchestheadcombined PPPPP ⋅−+=  

PROBABILISTIC CRASHWORTHINESS MODEL 

Probabilistic analysis algorithms require response 
solutions for specific combinations of the random 
variable values. These perturbed responses created by 
changing the variables in the response models are used 
for random sampling or may be used for finite difference 
approximations of gradients used in fast probability 
integration methods.  

The overall probabilistic crashworthiness model is 
defined by NESSUS, LS-DYNA and MADYMO as in 
Figure 4. The combination of these models provides an 
automatic procedure to relate changes in the random 
variables to the LS-DYNA and MADYMO input and to 
easily select model responses such as displacements 
used to define the acceptance criteria measures. The 
model allows the variation of any of the defined random 
variables. 

A large portion of the development of this model 
involved defining how a change of each random variable 
is mapped to the LS-DYNA input. The mapping was 
defined and verified for each of the twenty variables. As 
an example, when the rail tolerance is perturbed, the 
resulting change in the LS-DYNA finite element model is 
automatically made by NESSUS based on the mapping 
definition (modifying the Z-coordinates of the nodes for 
the rail), the analysis rerun, and finally the response of 
interest extracted from the LS-DYNA results file. This 
procedure is fully automated in the developed model for 
all defined random variables. 

ANALYSIS PROCEDURE 

Solutions to nonlinear dynamic analyses are sensitive to 
changes in the geometry and material property 
parameters. In some cases these changes can be 
severe enough to cause numerical problems that 
terminate the analysis and, in others, the solution time 
step can become so small that the analysis time 
becomes prohibitive. The first attempt of computing the 
reliability for the footrest intrusion acceptance criteria 
using fast probability integration methods resulted in 
incomplete LS-DYNA solutions due to model sensitivity 
to these combined random variables. The cause of error 



of these cases was not investigated in detail. One 
suspected cause is the alignment of contact surfaces 
when geometry variables are changed. Remedying 
these cases would require portions of the finite element 
model to be regenerated resulting in a slightly different 
model and substantial development time. It was deemed 
more expedient to use an approach that would lend itself 
to less rigid requirements on the variable perturbations 
for this analysis. 

A response surface approach was used to create 
functions defining each acceptance criteria measure 
because of the difficulty in automatically computing 
perturbed solutions required for fast probability 
integration methods. The response surface approach 
was also used since it would reduce the number of 
required LS-DYNA analyses and facilitates the redesign 
analysis. The response surface approach will not be as 
accurate as fast probability integration methods if the 
derived function does not represent the response over 
the design region. For this demonstration, the response 
surface approach was used to represent the general 
behavior of the acceptance criteria measures and also 
allowed the procedure to be demonstrated within a 
reasonable amount of computational effort. The 
accuracy of the response surface models should be 
checked in the design region for confidence in the 
probability predictions. 

RESPONSE SURFACE MODEL GENERATION 

Response surface models (RSM) were created for each 
of the ten acceptance criteria measures using a linear 
and quadratic term for each random variable (mixed 
terms were not obtained due to the computational 
expenses required to compute them). The approach was 
to obtain LS-DYNA and MADYMO solutions for each 
random variable perturbed ±2 standard deviations from 
the mean value. For several random variables only one 
perturbed solution was obtained. For these cases, only 
the linear term is included in the regression model.  

Large vehicle rail thickness (RAILTTRK) was perturbed 
±11.111 standard deviations. This change resulted from 
an improved definition of the standard deviation for this 
variable after the LS-DYNA analyses were complete. 
The perturbed responses for all acceptance criteria 
measures indicated that the change in the response was 
small and fairly linear and thus sufficient for the 
response surface models. Table 6 lists the perturbations 
used to create the response surface models for each 
acceptance criteria. 

Finally, it was noted that several runs had been 
completed where the rail weld stiffness was not included 
in the LS-DYNA model. It was found that including the 
weld stiffness did not affect the mean value solution of 
the acceptance measures by a significant amount. 
Therefore, rather than rerunning these cases at a 
considerable computational expense, the regression 
models were corrected using a first order approximation 
(a ratio of each acceptance measure computed with and 

without the weld stiffness). For probabilistic analysis, the 
important aspect of the response surface is accurate 
derivatives in the response surface function. This first 
order correction provides reasonable accuracy of the 
derivatives for the response surface models. 

Table 6.  Perturbations used to Create Response Surface 
Models. 

Variable Pert 1 Pert 2 
RTOLCARR 

IMPVEL 
BUMPER 

TIRE 
RAILTTRK 

IMPAN 
YIELDCAR 
EMODCAR 
FDENSCAR 

FOAMUC 
FOAMUTRK 
RTOLTRKR 
RTOLTRKL 
FRWSTIFF 
RRWSTIFF 
RAILTCAR 

2 
2 
-2 
2 

11.111 
2 

0.331 
1.714 

-2 
2 
2 
2 
2 
2 
2 
2 

2 
-2 
-2 
2 

-11.111 
-2 
-2 
-2 
-2 
-2 
-2 
-2 
-2 
-2 
-2 
-2 

 

A stochastic model was defined that included each of 
the acceptance criteria responses. Each response 
surface model was generated by selecting the 
appropriate response computed with the LS-DYNA and 
MADYMO analysis programs.  

SYSTEM MODELS 

A system reliability analysis is critical to correct 
evaluation of the vehicle performance especially for 
identifying the probabilistic sensitivity factors at the 
system level for redesign analysis. It is expected that 
certain parameters such as stiffness/strength can 
improve reliability for compartment intrusion 
performance measures but may be detrimental to the 
crash pulse attenuation as measured at the vehicle 
occupant. The system model correctly accounts for 
events with common variables (correlated events) and 
thus correctly identifies the important variables on the 
system level. System reliability for the model was 
computed using a probabilistic fault tree analysis (PFTA) 
method using the fault tree shown in Figure 10. The 
performance of each event is modeled using a response 
surface model. Monte Carlo simulation is used to 
compute the system reliability since each performance 
function is defined by a fast running response surface 
model. The system reliability is also computed using the 
individual event reliabilities based on the independent 
event assumption described earlier. 
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BASELINE RESULTS: 

The system reliability was computed using the Monte 
Carlo simulation method in NESSUS with 100,000 
samples. The computed system reliability for the original 
design is 23% (1.1% error, 95% confidence). The 
system reliability assuming independent events is 18%, 
which is a conservative estimate in this case. These 
results are summarized in Table 7. Finally an NCAP star 
rating of 4 was computed using the nominal values of 
the HIC and chest acceleration. These values are listed 
in Table 8. 

A Monte Carlo analysis was performed for each event 
and the results are shown in Table 9. The error in the 
probability for a 95% confidence interval is also included 
in the table. The femur axial load acceptance criteria 
event has the lowest reliability followed by the HIC event 
and the door aperture closure event. All other 
acceptance criteria have relatively high reliability. 

The probabilistic sensitivity factors computed are shown 
in Figure 11. These sensitivity factors define the 
parameters that can be most effectively modified to 
improve the reliability. From the figure, the nominal value 
of the yield strength of the small vehicle rail material can 
be most influential in increasing the reliability. The 
positive sign indicates that the reliability will increase if 
the yield strength is increased. The sign convention is 
opposite when the reliability is greater than 50%.  The 
next most influential parameters are the nominal value of 
the front weld stiffness of the small vehicle rails followed 
by standard deviation (or scatter) of the small car yield 
strength. Several variables show negligible importance 
including the tire height and the foam properties for both 
vehicles. 

The nominal value of the right car rail installation 
tolerance also shows some importance. This parameter 
is a center installation point and would not be considered 
for a design change without changes to the vehicle 
structure. 

 

Probability of Vehicle Safety

OR

Instrument 
Panel 

Intrusion
HIC Chest g's Chest 

Deflection Femur Load

Engine 
Displacement

Footrest 
Intrusion

Door 
Aperature 
Closure

Brake Pedal 
Intrusion

Toe Pan 
Intrusion  

Figure 10.  Probabilistic Fault Tree of the 
Crashworthiness Model  

Table 7.  System Reliability of the Original Design 

System Reliability Approach Reliability 
NESSUS PFTA 23% (1.1% error) 

Independent Events 18% 

 

Table 8.  NCAP Star Rating for Original Design 

Design HIC 
Chest 

Acceleration 
Combined 
Probability 

Star 
Rating 

Original 784 45 g’s 17% 4 

 

Table 9.  Event Reliability for Original Design 

Acceptance Criteria Reliability  Samples (Error)

HIC 

Chest acceleration  

Chest deflection 

Femur axial load 

Footrest intrusion 

Toe pan deflection 

Brake pedal location 

Instrument panel def. 

Door aperture closure

Engine location 

57.7910% 

92.2970% 

99.9752% 

46.4020% 

99.9623% 

100.0000% 

100.0000% 

99.6870% 

72.6750% 

99.6000% 

100,000 (0.7%) 

100,000 (2.1%) 

2,000,000 (8.8%)

100,000 (0.6%) 

2,000,000 (7.1%)

2,000,000 (N/A)1

2,000,000 (N/A) 1

2,000,000 (2.5%)

200,000 (0.7%) 

2,000,000 (2.2%)
1NESSUS limit on samples and all samples resulted in a 
safe condition 
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Figure 11.  Probabilistic Sensitivity Factors for the 

Original Design. 



ANALYSIS ITERATIONS: 

The objective of the analysis is to provide a 
recommendation to improve the reliability of the small 
vehicle in a vehicle-to-vehicle frontal offset impact. The 
approach used is to rely on the probabilistic sensitivity 
factors to identify the dominant parameters (random 
variable mean and standard deviation) that will improve 
system reliability. Several restrictions were placed on the 
parameters that could be modified: 

• Change only small car parameters. 
• Parameters can only be changed by ±10% with 

exception of the weld stiffness. Changing the 
number of welds or weld diameter can 
increase/decrease the weld stiffness. 

• Limit extrapolating the response surface models. 
 

The following steps are performed for each parameter 
identified from the probabilistic sensitivity factors as 
candidates to improve the reliability: 

• Modify the appropriated mean or standard deviation 
in the problem statement, 

• Evaluate the reliability using Monte Carlo simulation, 
• Evaluate the probabilistic sensitivity factors to find 

additional parameter candidates for reliability 
improvement if warranted, and 

• Evaluate the acceptance criteria for event reliabilities 
once a model with acceptable system reliability is 
reached to identify the dominant events. 

 
Table 10 lists the iteration history along with the 
justification for modifying each parameter. The table also 
lists the reference to the probabilistic sensitivity 
measures used to select the parameter to improve the 
reliability. The reliability and star rating improvements 
are shown in Figure 12. The system reliability for the 
final design is 86% (1.5% error) with a 5 star rating. The 
system reliability assuming independent events is 85%, 
which is a slightly conservative estimate for this case. 
These results are summarized in Table 11. 

The parameters of the final iteration are listed Table 12. 
Finally, the event reliabilities were evaluated for the final 
configuration to identify the dominant acceptance criteria 
as listed in Table 13. The dominant event for the original 
design was the femur axial load acceptance criteria. The 
femur axial load also shows the lowest reliability for the 
final design but increased from a reliability of 46% to 
93%. 

Table 10.  Redesign Iteration History Including 
Justification for Parameter Changes. 

Iter. Reference Modification (Justification) Reliability 

0 Figure 11 Original design 23% 

1 
Figure 13 

Increased small vehicle 
yield stress. 
(use a different material 
for the rails) 

28% 

2 Figure 14 Reduce COV of small 
vehicle yield stress to 4%. 
(improved quality control 
from supplier) 

30% 

3 Figure 15 Increase small vehicle 
weld stiffness.  
(larger weld diameter or 
increased number of 
welds) 

40% 

4 Figure 16 Increase front rail weld 
stiffness. 
(larger weld diameter or 
increased number of 
welds) 

48% 

5 Figure 17 Reduce COV of small 
vehicle yield stress to 2%. 
(improved quality control 
from supplier) 

53% 

6 Figure 18 Reduce front rail weld 
stiffness COV to 5%. 
(improved quality control 
of assembly line) 

62% 

7 Figure 19 Reduce rail thickness 
COV from 1.8% to 1% 
(improved quality control 
from supplier) 

66% 

8 Figure 20 Reduce front rail weld 
stiffness COV to 2%. 
(improved quality control 
of assembly line) 

70% 

9 Figure 21 Reduce COV of small 
vehicle yield stress to 1%. 
(improved quality control 
from supplier) 

79% 

10 Figure 22 Reduce COV of small 
vehicle foam material to 
10%. 
(improved quality control 
from supplier) 

83% 

11 Figure 23 Tighten installation 
tolerances for bumper and 
rail. 
(improved quality control 
of assembly line) 

86% 

Table11.  System Reliability of the Final Design 

System Reliability Approach Reliability 

NESSUS PFTA 86% (1.5% error) 

Independent Events 85% 
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Table 12.  Random Variables (Final Design) 

 
Name Mean 

Standard 
Deviation Units Dist. 

Small Vehicle 

1 YIELDCAR 280 2.8 N/mm2 Log. 

2 EMODCAR 210000 10500 N/mm2 Normal

3 FDENSCAR 8.00E-10 8.00E-11 Tonne/mm3 Normal

4 FOAMUCAR 25 2.5 N/mm2 Normal

5 RTOLCARR 0 2.1167 mm Normal

6 RTOLCARL 0 4.23333 mm Normal

7 IMPVEL 15643 156.43 mm/sec Normal

8 IMPANGL 0 3.3333 degrees Normal

9 BUMPER 0 2.1167 mm Normal

10 TIRE 0 4.23333 mm Normal

11 FRWSTIFF 1.6E-3 3.2E-5 - Log. 

12 LRWSTIFF 1.33E-03 1.33E-04 - Log. 

13 RRWSTIFF 1.463E-03 7.315E-05 - Log. 

14 RAILTCAR 1.9 0.019 mm Normal

Large Vehicle 

15 FDENSTRK 4.95E-11 7.4184E-12 Tonne/mm3 Normal

16 FOAMUTRK 210 31.5000 N/mm2 Normal

17 RTOLTRKR 0 4.23333 mm Normal

18 RTOLTRKL 0 4.23333 mm Normal

19 RAILTTRK 1.73 0.03114 mm Normal

20 OVERLAP 0 0 mm Normal

5 Star Range
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2 Star Range
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Figure 12. System Reliability Improvement 

Table 13.  Reliability for each Acceptance Criteria 
(Original and Final Designs). 

Acceptance Criteria Reliability 
Samples 
(Error) 

Description
NESSUS 
Variable

Original 
Design 

Final 
Design 

Final 
Design 

HIC g_hic 57.7910% 94.0120% 100,000 
(2.4%) 

Chest 
acceleration g_cg 92.2970% 98.8240% 200,000 

(4.0%) 
Chest 
deflection g_chestd 99.9752% 99.9999% 2,000,000 

(196%)1 
Femur axial 
load g_femurl 46.4020% 92.9330% 100,000 

(2.2%) 
Footrest 
intrusion g_fri 99.9623% 100.0000% 2,000,000 

(N/A) 2 

Toepan 
deflection g_tpd 100.0000% 100.0000% 2,000,000 

(N/A) 2 

Brake pedal 
location g_bpd 100.0000% 100.0000% 2,000,000 

(N/A) 2 

Instrument 
panel def. g_ipd 99.6870% 99.9719% 2,000,000 

(8.3%) 

Door 
aperture 
closure 

g_dac 72.6750% 98.7460% 200,000 
(3.9%) 

Engine 
location g_engd 99.6000% 99.9997% 2,000,000 

(88%) 
1NESSUS limit on samples. The reliability is ±error*(1-
Reliability) resulting in the prediction well within an order 
of magnitude of (1-Reliability). 
2NESSUS limit on samples and all samples resulted in a 
safe condition. 
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Figure 13.  Probabilistic Sensitivity Factors for Iteration 1. 
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Figure 14.  Probabilistic Sensitivity Factors for Iteration 2. 
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Figure 15.  Probabilistic Sensitivity Factors for Iteration 3. 
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Figure 16.  Probabilistic Sensitivity Factors for Iteration 4. 
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Figure 17.  Probabilistic Sensitivity Factors for Iteration 5. 
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Figure 18.  Probabilistic Sensitivity Factors for Iteration 6. 
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Figure 19.  Probabilistic Sensitivity Factors for Iteration 7 
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Figure 20.  Probabilistic Sensitivity Factors for Iteration 8.  
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Figure 21.  Probabilistic Sensitivity Factors for Iteration 9. 
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Figure 22.  Probabilistic Sensitivity Factors for Iteration 

10. 
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Figure 23.  Probabilistic Sensitivity Factors for Iteration 

11 (Final Design). 

 
RESPONSE SURFACE VERIFICATION 

Verification of the response surface in the area of 
interest is a critical step in the analysis. A simple 
verification can be achieved by rerunning the analysis 
codes using the design parameters obtained using the 
response surface method. Acceptance criteria computed 
using these re-runs are then compared by the values 
predicted by the RSM. While this approach does not 
guarantee the accuracy of the approach, it does provide 
design direction and establish the confidence in the 
proposed design changes. 

The LS-DYNA and MADYMO models were analyzed for 
each acceptance criteria using the parameter values for 
the final design listed in Table 12. This step is used to 
determine the accuracy of the response surface models 
used for the reliability calculations. The results for each 
acceptance criteria are listed in Table 14. The table 
compares the improvement in the acceptance criteria 
based on both the actual model for both the original and 
final designs. The results from the actual model using 
the new design parameters are also compared to the 
RMS method and a percent error is listed. A negative 



error corresponds to a conservative prediction by the 
response surface model. 

Table 14 indicates that in several cases the 
improvement as indicated by model re-runs are higher 
than the values predicted by RMS method. For example, 
HIC was found by the re-run model to be twice as 
improved as predicted by the RMS method. In some 
other cases the parameter predictions were found to be 
of very little difference. Out of the ten acceptance 
criteria, the approach resulted in an improvement of 
three acceptance criteria when compared to the original 
models. Because of the high reliability of the majority of 
the events, these slight increases of acceptance criteria 
are not expected to impact the system reliability. These 
are trade-offs for individual acceptance criteria reliability 
to improve the overall system reliability. However, the 
femur load and door aperture closure criteria need 
further investigation. These criteria exceed the 
deterministic threshold limits and were events that 
demonstrated lower reliability in the system analysis.  

The NCAP star rating is listed in Table 15 to compare 
the response surface and actual models. The 
approximate response surface models provide a 
conservative estimate of the star rating. 

The cause(s) of the discrepancies between the RMS 
and actual models have not been investigated as of the 
writing of this paper. However, some of the potential 
sources of error in the response surface models include: 

1. Linear terms for several variables 
2. No mixed terms 
3. Second order function does not fit the true response 
4. RSM is primarily a “local” or “near field” approach 
5. Possible numerical errors in the models 

Table 14.  Comparison of the LS-DYNA and MADYMO 
Results (re-runs) with Response Surface Models. 

Acceptance Criteria 
Original 
Design 
Models 

Final 
Design 
Models 

RSM Error

Footrest intrusion (mm) 7 9 15 -63%

Toe pan deflection (mm) 16 19 8 58%

Brake pedal location (mm) 12 14 7 47%

Instrument panel 
deflection (mm) 67 72 67 7% 

Door aperture closure 
(mm) 100 106 76 29%

Engine location (mm) 156 161 141 12%

HIC 784 235 416 -77%

Chest acceleration (g’s) 45 41 41 2% 

Chest deflection (mm) 61 60 50 15%

Femur load (N) 1052 10636 9858 7% 

Table 15.   NCAP Star Rating for Implicit Model 

Design HIC 
Chest 

Acceleration 
Combined 
Probability 

Star 
Rating 

Original 784 45 g’s 17% 4 

Final 
(RSM) 416 41 g’s 8.7% 5 

Actual 
Model 235 41 g’s 7.6% 5 

 

CONCLUSION 

A stochastic crashworthiness model was developed 
capable of providing simulations of vehicle crashes by 
accounting for the uncertainty of input parameters. The 
NESSUS probabilistic analysis software provided a 
framework in which the LS-DYNA model of vehicle 
frontal offset impact and the MADYMO model of a 50th 
percentile male Hybrid III dummy were combined to 
compute the crashworthiness characteristics. The model 
allows an automatic procedure to relate changes in the 
random variables to the LS-DYNA and MADYMO input 
and easily select model responses such as 
displacements used to define the acceptance criteria 
measures. The model allows the variation of any of the 
defined random variables and other model parameters 
can easily be included as random variables. 

To facilitate the probabilistic analysis and the redesign 
analyses, a response surface model (RSM) was 
developed for each acceptance criteria performance 
model. The RSM approach aided in reducing the 
number of required LS-DYNA analyses and provided a 
fast running function that could be used for the design 
study tradeoff analysis. Based on the RSM models, the 
femur axial load acceptance criteria event was found to 
have the lowest reliability (46%) followed by the HIC 
event (58%) and the door aperture closure event (73%). 
A system reliability analysis was used to include the 
contribution of all acceptance criteria to correctly 
quantify the vehicle reliability and identify important 
parameters. The system reliability of the original design 
was computed as 23%. The NCAP star rating was also 
computed as another measure of vehicle performance. 
The original design predicted a 4 star rating. 

A redesign approach was developed and performed 
using the probabilistic sensitivity factors. Eleven 
iterations were performed resulting in a system reliability 
of 86% (original design reliability was 23%). The design 
changes include increasing the rail material yield 
strength and reducing the variation, reducing the 
variation of the bumper and rail installation tolerances, 
and increasing the rail weld stiffness and reducing its 
variation, and reducing the variation of the foam 
properties of the small vehicle. It should be noted that 
evaluating a new design requires very little 
computational expense since the performance functions 
are defined by response surface models. A final 
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evaluation of the reliability for each acceptance criteria in 
the new design was performed to identify the dominant 
criteria. The reliability of the original design was 
dominated by the femur load acceptance criteria (46%). 
The femur axial load also shows the lowest reliability for 
the final design but increased from a reliability of 46% to 
93%. 

A system reliability analysis is critical to correct 
evaluation of the vehicle performance especially for 
evaluating the probabilistic sensitivity factors at the 
system level for redesign analysis. Certain parameters 
such as stiffness/strength parameters can improve 
reliability for compartment intrusion performance 
measures but may be detrimental to the crash pulse 
attenuated to the vehicle occupant. The system model 
correctly accounts for events with common variables 
(correlated events) and thus correctly identifies the 
important variables on the system level. 

The accuracy of the response surface models was 
evaluated by rerunning the LS-DYNA and MADYMO 
models using parameters for the new design. Out of the 
ten acceptance criteria, the approach resulted in an 
improvement of three acceptance criteria when 
compared to the original models. Because of the high 
reliability of the majority of the events, these slight 
increases of acceptance criteria are not expected to 
impact the system reliability. These are trade-offs for 
individual acceptance criteria reliability to improve the 
overall system reliability. However, the femur load and 
door aperture closure criteria need further investigation. 
These criteria exceed the deterministic threshold limits 
and were events that demonstrated lower reliability in 
the system analysis. 

The developed models and redesign approached 
yielded an improved vehicle design based on reliability 
of ten acceptance criteria and the NCAP star rating 
using the response surface models. However, the 
verification study indicated that there is potential error in 
the response surface models and thus potential error in 
the reliability predictions. Several other limitations were 
identified during development and analysis of this model 
and warrant further investigation. Some of these 
limitations affect the performance models for each 
acceptance criteria: 

1. Obtain LS-DYNA solutions to include the left rail 
stiffness as a random variable. The variation for this 
parameter did not yield complete LS-DYNA solutions 
and thus were not included in the performance 
models.   

2. Improve the response surface models for 
acceptance criteria where warranted by the 
verification study. 

3. Obtain model solutions for other important variables 
where a linear approximation was used. 

 

These three items should be pursued prior to using 
these results for decision analysis. 

In general, high-fidelity models are required to 
accurately predict vehicle performance for complex 
situations such as crash scenarios. These models are 
typically computationally intensive and multiple runs are 
required to predict reliability and for evaluating new 
designs. Practical application of this approach for 
performance models of this scale requires accurate 
response surface models of the performance measures. 
Several other development areas are identified to assist 
in future assessments: 

1. Develop a meta-model capability to automate the 
response surface generation procedure used in this 
effort. 

2. Include additional meta-models such as Kriging to 
enhance the predictive models by more accurately 
modeling the response of highly nonlinear 
applications encountered in impact analysis. 

3. Develop an algorithm to automatically change the 
perturbation size when a response evaluation fails. 
This capability would assist in using fast probability 
integration methods such as the advanced mean 
value (AMV) method for stochastic crashworthiness 
analysis. 

 

The results presented here show that probabilistic 
analysis can be used to effectively improve the design of 
complex systems. Improvements in automation of the 
analysis process and using combinations of efficient and 
robust probabilistic methods and approximate fast 
running performance models will lead to practical 
application of the developed approach for complex 
engineering design. 
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